Calculus – Prove Hypergeometric Function Identity

calculusclosed-formhypergeometric functionspecial functions

I've found the following hypergeometric function value by numerical observation. The identity matches at least for $100$ digits.

$${_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right) \stackrel{?}{=} \frac 35 \cdot 5^{1/6} \cdot 3^{2/3}$$

Or using a Pfaff transformation in an equivalent form

$$81^{1/6} \cdot {_2F_1}\left(\begin{array}c\tfrac16,\tfrac16\\\tfrac56\end{array}\middle|\,-80\right) \stackrel{?}{=} \frac 35 \cdot 5^{1/6} \cdot 3^{2/3}$$

How could we prove it?


Other related problem: How could we prove that

$${_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right) \stackrel{?}{=} {_2F_1}\left(\begin{array}c\tfrac12,\tfrac56\\\tfrac12\end{array}\middle|\,\frac{4}{9}\right) = {_1F_0}\left(\begin{array}c\tfrac56\\\ – \,\end{array}\middle|\,\frac{4}{9}\right)$$

Best Answer

My question is related to this question by Vladimir. Because it is already proved that $${\large\int}_{-1}^1\frac{dx}{\sqrt[3]{9+4\sqrt5\,x}\ \left(1-x^2\right)^{\small2/3}} = \frac{3^{\small3/2}}{2^{\small4/3}\,5^{\small5/6}\,\pi }\Gamma^3\!\!\left(\tfrac13\right),$$

we have the answer for my question too, since according to Maple

$${\large\int}_{-1}^1\frac{dx}{\sqrt[3]{9+4\sqrt5\,x}\ \left(1-x^2\right)^{\small2/3}} = \frac{2}{9} \frac{\sqrt[3]{4}\,\sqrt[3]{3}\,\pi^2\,{_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right)}{\Gamma^3 \left( \frac{2}{3} \right)}.$$

The second part of the question $-$ the part under the line $-$ is still open.

Related Question