[Math] Proof the countable union of f-sigma sets is an f-sigma set

real-analysis

Assume the context of a first undergraduate course in real analysis, i.e. all closed sets are closed sets of the real line.

Let $\{F_n: n \in \mathbb{N}\}$ be a countable collection of $F_\sigma$ sets.

Then for each $F_j$ , there exists a countable collection of closed sets C$_{j,k}$ s.t. $\bigcup\limits_{k=1}^{\infty} C_{j,k} = F_j$.

Then $\bigcup\limits_{n=1}^{\infty} ( \bigcup\limits_{k=1}^{\infty} C_{n,k} )$ = $\bigcup\limits_{n=1}^{\infty} F_{n}$

Now suppose x $\in$ ($\bigcup\limits_{n=1}^{\infty} ( \bigcup\limits_{k=1}^{\infty} C_{n,k} )$) $^c$, then x $\notin$ $\bigcup\limits_{n=1}^{\infty} ( \bigcup\limits_{k=1}^{\infty} C_{n,k} )$

which implies $\forall$ n $\in$ N, x $\notin$ {F$_n$} = $\bigcup\limits_{k=1}^{\infty} C_{n,k}$,

implies $\forall$ k $\in$ N, x $\notin$ C$_{k,n}$.

We conclude that x is not a closed set.

Therefore, $\forall$ x $\in$ $\bigcup\limits_{n=1}^{\infty} F_{n}$, x is closed.

Thus, $\bigcup\limits_{n=1}^{\infty} F_{n}$is an F$_\sigma$ set.

………………………………………………………………………………………………………………….

There's probably a lot wrong with this proof. Any obvious ways to improve/fix it?

Best Answer

Note that a countable union of a countable union is a countable union.

Now adhering to your notation, you just need to prove that $\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty C_{n,k}=\bigcup_{(n,k)\in\mathbb{N\times N}}C_{n,k}$.