[Math] Proof that $\log_a b \cdot \log_b a = 1$

algebra-precalculuslogarithmsproof-verificationproof-writing

Prove that $\log_a b \cdot \log_b a = 1$

I could be totally off here but feel that I have at least a clue.
My proof is:

Suppose that $a = b$, then $a^{1} = b$ and $b^{1} = a$ and we are done.
Suppose now that $a \neq b$. We wish to show that: $\log_b a = \frac{1}{\log_a b}$.

\begin{align*}
1 &= \frac{1}{\log_a b} \cdot \frac{1}{\log_b a} \cdot \left(\log_a{b} \cdot \log_b a \right) \\
&= \left(\log_a{b} \cdot \frac{1}{\log_a b} \right) \cdot \left(\log_b a \cdot \frac{1}{\log_b a}\right) \\
&= \left(\log_b a \cdot \frac{1}{\log_b a}\right) \cdot 1 \\
&=1 \cdot 1 \\
&= 1
\end{align*}

Best Answer

Method I

Let $\log_ab=x$ and $\log_ba=y$. Then we have

$$a^x=b \quad\text{and}\quad b^y=a$$

So,

\begin{align} (b^y)^x&=b\\ b^{xy}&=b\\ xy&=1 \end{align}


Method II

Let $\log_ab=x$. Then we have

\begin{align} a^x&=b\\ \log_b(a^x)&=\log_bb\\ x\log_ba&=1 \end{align}

Related Question