Exponential Function – Proof that e^x is a Transcendental Function

exponential functiontranscendental-numbers

Let a function $f(x)$ be algebraic if it satisfies an equation of the form $$c_n(x)(f(x))^n + c_{n-1}(x)(f(x))^{n-1} + \cdots + c_0(x)=0,$$ for $c_k(x)$ rational functions of $x$, and let $f$ be called transcendental if it is not algebraic. Is it possible to use this definition directly to show that $e^x$ is transcendental?

One way I have been considering for any complex number is this:

Let $x_0\in\mathbb{C}$ and $x_n=x_0+2\pi i n$, where $n\in\mathbb{Z}$. Hence $x_n\neq x_m$ for all $n\neq m$, but we do have $e^{x_n}=e^{x_m}$ for all $n,m\in\mathbb{Z}$ (since $e^{2\pi i n} = 1$ for all $n\in\mathbb{Z}$). But since the Implicit Function Theorem suggests there exists an exact algebraic formula for $x$ using the above definition of an algebraic function, then $e^x$ can not be algebraic since there are an infinite number of representations $x_n$ of $x$.

Best Answer

One could use the growth at infinity of the function $f:x\mapsto\mathrm e^x$.

Assume that that $f$ is algebraic and choose a real number $x\geqslant0$. Then $|f(x)|\geqslant1$ and $$ |c_n(x)|\,|f(x)|^n\leqslant b(x)|f(x)|^{n-1},\qquad b(x)=\sum\limits_{k=0}^{n-1}|c_k(x)|. $$ Hence, for every real number $x\geqslant0$ such that $c_n(x)\ne0$, $|f(x)|\leqslant b(x)/|c_n(x)|$. But indeed, $c_n(x)\ne0$ for every real number $x$ large enough and $b(x)/|c_n(x)|$ can grow at most polynomially when the real number $x$ goes to $+\infty$ while $|f(x)|=\mathrm e^x$ grows... well, exponentially. This is a contradiction.

Related Question