Combinatorics – Proof of the Hockey Stick Identity

binomial-coefficientscombinationscombinatoricsfaqsummation

After reading this question, the most popular answer use the identity
$$\sum_{t=0}^n \binom{t}{k} = \binom{n+1}{k+1}.$$

What's the name of this identity? Is it the identity of the Pascal's triangle modified.

How can we prove it? I tried by induction, but without success. Can we also prove it algebraically?

Thanks for your help.


EDIT 01 : This identity is known as the hockey-stick identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself are highlighted, a hockey-stick shape is revealed.

Hockey-stick

Best Answer

Imagine the first $n + 1$ numbers, written in order on a piece of paper. The right hand side asks in how many ways you can pick $k+1$ of them. In how many ways can you do this?

You first pick a highest number, which you circle. Call it $s$. Next, you still have to pick $k$ numbers, each less than $s$, and there are $\binom{s - 1}{k}$ ways to do this.

Since $s$ is ranging from $1$ to $n+1$, $t:= s-1$ is ranging from $0$ to $n$ as desired.