[Math] Proof of the contracted Bianchi identity

riemannian-geometrytensors

In proving the contracted Bianchi identity, I have problems understanding the contractions.
Starting with the second Bianchi identity:
$$R_{ijkl;m}+R_{ijlm;k}+R_{ijmk;l}=0$$
The first step is to contract the $i,l$ indices, obtaining
\begin{align}
0 &= R^l_{jkl;m}+R^l_{jlm;k}+R^l_{jmk;l} \\
&= R_{jk;m}-R_{jm;k}+R^l_{jmk;l}
\end{align}
But I don't understand why $R^l_{jkl;m}=R_{jk;m}$. Here is my attempt to prove this($R$ is the Riemann curvature tensor, while $Ric$ is the Ricci curvature tensor):
\begin{align}
R^l_{jkl;m} &= g^{il}R_{ijkl;m} \\
&= g^{il}(\nabla_{\partial_m}R)(\partial_i,\partial_j,\partial_k,\partial_l) \\
&= g^{il}(\partial_m R_{ijkl} – \Gamma^q_{mi}R_{qjkl} – \Gamma^q_{mj}R_{iqkl}
– \Gamma^q_{mk}R_{ijql} – \Gamma^q_{ml}R_{ijkq}) \\
\\
R_{jk;m} &= (\nabla_{\partial_m}Ric)(\partial_j, \partial_k) \\
&= \partial_m(Ric(\partial_j, \partial_k))-Ric(\nabla_{\partial_m}\partial_j, \partial_k)-Ric(\partial_j,\nabla_{\partial_m}\partial_k) \\
&= \partial_m R_{jk}-\Gamma^q_{mj}R_{qk}-\Gamma^q_{mk}R_{jq} \\
\text{(use $R_{jk}=g^{il}R_{ijkl}$)}\quad
&= g^{il}(\partial_m R_{ijkl} – \Gamma^q_{mj}R_{iqkl} – \Gamma^q_{mk}R_{ijql})
+R_{ijkl}\partial_m g^{il}
\end{align}
Therefore, for my purpose, I have to show that
$$g^{il}(\Gamma^q_{mi}R_{qjkl} + \Gamma^q_{ml}R_{ijkq})+R_{ijkl}\partial_m g^{il}=0$$
But I can't see how this can hold. In particular, I don't know how to express $\partial_m g^{il}$ in terms of other known quantities such as the Christoffel symbols or the $g_{ij}$'s.

Best Answer

Much easier: $$R_{jk;m} = (g^{il}R_{ijkl})_{;m} = g^{il}{}_{;m}R_{ijkl} + g^{il}R_{ijkl;m} = g^{il}R_{ijkl;m},$$ because all covariant derivatives of $g$ (and hence of its inverse) are zero.