[Math] Proof of Heron’s Formula for the area of a triangle

areageometrytrianglestrigonometry

Let $a,b,c$ be the lengths of the sides of a triangle. The area is given by Heron's formula:

$$A = \sqrt{p(p-a)(p-b)(p-c)},$$

where $p$ is half the perimeter, or $p=\frac{a+b+c}{2}$.

Could you please provide the proof of this formula?

Thank you in advance.

Best Answer

A simple derivation exploits the cosine theorem. We have $\Delta=\frac{1}{2}ab\sin C$, hence $$ 4\Delta^2 = a^2 b^2 \sin^2 C = a^2 b^2 (1-\cos C)(1+\cos C).\tag{1}$$ On the other hand, $ 2ab\cos C = a^2+b^2-c^2$, hence $$ 2ab(1+\cos C) = (a+b)^2-c^2 = (a+b+c)(a+b-c), \tag{2}$$ $$ 2ab(1-\cos C) = c^2-(a-b)^2 = (a-b+c)(-a+b+c),\tag{3}$$ and by multiplying $(2)$ and $(3)$ and exploiting $(1)$ $$ 16\Delta^2 = (a+b+c)(-a+b+c)(a-b+c)(a+b-c)\tag{4} $$ which is equivalent to $$ \Delta = \sqrt{s(s-a)(s-b)(s-c)}\tag{5} $$ as wanted.


Alternative derivation: by considering the circumcenter $O$ and its distances from the sides we have $$2\Delta = R\sum_{cyc}a\cos A,\qquad 16\Delta^2 = \sum_{cyc}a^2\cdot 2bc(\cos A)=\sum_{cyc}a^2(b^2+c^2-a^2)\tag{6}$$ through $4R\Delta=abc$ and the cosine theorem. By rearranging the RHS of $(6)$ $$ 16\Delta^2 = (a^2+b^2+c^2)^2-2(a^4+b^4+c^4)\tag{7} $$ immediately follows.

Related Question