Calculus – Proof of a Ramanujan Integral

calculusdefinite integralsimproper-integrals

While studying Ramanujan's Collected Papers I came across a paper titled "Some Definite Integrals" which appeared in Messenger of Mathematics, ${\tt XLIV}, 1915, \mbox{10-18}$.
It contains lot of weird integrals for which Ramanujan has given proofs.

  • However in one instance he discusses about the integral \begin{align}
    &\int_{0}^{\infty}\frac{dx}{\left(1 + x^{2}\right)\left(1 + r^{2}x^{2}\right)\left(1 + r^{4}x^{2}\right)\cdots}
    \\[5mm] = &\ \frac{\pi}{2\left(1 + r + r^{3} + r^{6} + r^{10} + \cdots\right)}\label{1}\tag{1}
    \end{align}
    where $0 < r < 1$.

  • Ramanujan derives this formula from \begin{align}
    &\int_{0}^{\infty}\frac{\left(1 + arx\right)\left(1 + ar^{2}x\right)\cdots}{\left(1 + x\right)\left(1 + rx\right)\left(1 + r^{2}x\right)\cdots}x^{n – 1}\,\mathrm{d}x
    \\[5mm] = &\
    \frac{\pi}{\sin\left(n\pi\right)}
    \prod_{m = 1}^{\infty}\frac{\left(1 – r^{m – n}\,\,\right)\left(1 – ar^{m}\,\right)}{\left(1 – r^{m}\,\right)\left(1 – ar^{m – n}\,\,\right)}\label{2}\tag{2}
    \end{align}

    where $0 < r < 1, n > 0, 0 < a < r^{n – 1}$ and $n$ is not an integer and $a$ is not of the form $a = r^{p}$ where $p$ is a positive integer.

  • Unfortunately, Ramanujan does not prove the formula (\ref{2}).

Is there any direct approach to establish
(\ref{1}) without using (\ref{2}) or some way to establish (\ref{2}) $?$.

Best Answer

You can use residues, let $f(z)=\frac{1}{(1+z^2)(1+r^2z^2)(1+r^4z^2)...}$ this has an infite set of singularities at $z=\pm i 1/r^{n},n\in\Bbb N_0$. We can see that $\large\int_0^\infty\frac{1}{(1+x^2)(1+r^2x^2)(1+r^4x^2)...}dx=\frac{1}{2}\int_{-\infty}^\infty\frac{1}{(1+x^2)(1+r^2x^2)(1+r^4x^2)...}dx$

So we will consider the upper semi circle contour, spanning over $-\infty$ to $+\infty$, only the positive singularities are in this contour, i.e. $z=i\frac{1}{r}$.

Now $\operatorname{Res}(f(z),z=\frac{i}{r^{n}})=\large\lim_{z\to i\frac{1}{r^{n}}}(z-i\frac{1}{r^{n}})f(z)=\large\lim_{z\to i\frac{1}{r^{n}}}\frac{1}{r^n}(r^nz-i)f(z)$

$=\lim_{z\to i\frac{1}{r^{n}}}\frac{1}{r^n(r^nz+i)}\prod_{j=0,j\ne n}^\infty\frac{1}{(1+x^{2}r^{2j})}$

$=\large\frac{1}{2ir^n}\prod_{j=0,j\ne n}^\infty\frac{1}{(1-r^{2j-2n})}$

Now $\frac{1}{2}\int_{-\infty}^\infty\frac{1}{(1+x^2)(1+r^2x^2)(1+r^4x^2)...}dx=\frac{1}{2}2\pi i\sum \operatorname{Res}(f)=\frac{1}{2}\pi i\sum_{n=0}^\infty\frac{1}{ir^n}\prod_{j=0,j\ne n}^\infty\frac{1}{(1-r^{2j-2n})}$

From here I'm not sure how to reach the closed form, but hopefully this helps to show a different approach, even if you are not too well versed in integrals by residue :)

Related Question