Trigonometry – Proof for Sum of Arcsine Functions Formula

trigonometry

It is known that
\begin{align}
\arcsin x + \arcsin y =\begin{cases}
\arcsin( x\sqrt{1-y^2} + y\sqrt{1-x^2}) \\\quad\text{if } x^2+y^2 \le 1 &\text{or} &(x^2+y^2 > 1 &\text{and} &xy< 0);\\
\pi – \arcsin( x\sqrt{1-y^2} + y\sqrt{1-x^2}) \\\quad\text{if } x^2+y^2 > 1&\text{and} &0< x,y \le 1;\\
-\pi – \arcsin( x\sqrt{1-y^2} + y\sqrt{1-x^2}) \\\quad\text{if } x^2+y^2 > 1&\text{and} &-1< x,y \le 0.
\end{cases}
\end{align}

I tried to prove this myself, have no problem in getting the 'crux' $\arcsin( x\sqrt{1-y^2} + y\sqrt{1-x^2})$ part of the RHS, but face trouble in checking the range of that 'crux' under the given conditions.

Best Answer

Using this, $\displaystyle-\frac\pi2\leq \arcsin z\le\frac\pi2 $ for $-1\le z\le1$

So, $\displaystyle-\pi\le\arcsin x+\arcsin y\le\pi$

Again, $\displaystyle\arcsin x+\arcsin y= \begin{cases} \\-\pi- \arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})& \mbox{if } -\pi\le\arcsin x+\arcsin y<-\frac\pi2\\ \arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2}) &\mbox{if } -\frac\pi2\le\arcsin x+\arcsin y\le\frac\pi2 \\ \pi- \arcsin(x\sqrt{1-y^2}+y\sqrt{1-x^2})& \mbox{if }\frac\pi2<\arcsin x+\arcsin y\le\pi \end{cases} $

and as like other trigonometric ratios are $\ge0$ for the angles in $\left[0,\frac\pi2\right]$

So, $\displaystyle\arcsin z\begin{cases}\text{lies in } \left[0,\frac\pi2\right] &\mbox{if } z\ge0 \\ \text{lies in } \left[-\frac\pi2,0\right] & \mbox{if } z<0 \end{cases} $

Case $(i):$ Observe that if $\displaystyle x\cdot y<0\ \ \ \ (1)$ i.e., $x,y$ are of opposite sign, $\displaystyle -\frac\pi2\le\arcsin x+\arcsin y\le\frac\pi2$

Case $(ii):$ If $x>0,y>0$ $\displaystyle \arcsin x+\arcsin y$ will be $\displaystyle \le\frac\pi2$ according as $\displaystyle \arcsin x\le\frac\pi2-\arcsin y$

But as $\displaystyle\arcsin y+\arccos y=\frac\pi2,$ we need $\displaystyle \arcsin x\le\arccos y$

Again as the principal value of inverse cosine ratio lies in $\in[0,\pi],$ $\displaystyle\arccos y=\arcsin(+\sqrt{1-y^2})\implies \arcsin x\le\arcsin\sqrt{1-y^2}$

Now as sine ratio is increasing in $\displaystyle \left[0,\frac\pi2\right],$ we need $\displaystyle x\le\sqrt{1-y^2}\iff x^2\le1-y^2$ as $x,y>0$

$\displaystyle\implies x^2+y^2\le1 \ \ \ \ (2)$

So, $(1),(2)$ are the required condition for $\displaystyle \arcsin x+\arcsin y\le\frac\pi2$

Case $(iii):$

Now as $\displaystyle-\frac\pi2\arcsin(-u)\le\frac\pi2 \iff -\frac\pi2\arcsin(u)\le\frac\pi2$

$\arcsin(-u)=-\arcsin u$

Use this fact to find the similar condition when $x<0,y<0$ setting $x=-X,y=-Y$