[Math] Proof by cases. Formulate a conjecture. I don’t get it. Question inside.

discrete mathematics

I don't understand this math question for my discrete math 2 class.

FOrmulate a conjecture about the decimal digits that appear as the final decimal digit of the fourth power of an integer. Prove your conjecture using a proof by cases.

So that is the question. I'm having trouble figuring out the answer. ANy insight appreciated.

Best Answer

try this :-

first see what is $n^4$ for first integers $n$

$ 0^4 ={\color{Red} 0}\\ 1^4 ={\color{Red} 1}\\ 2^4=1{\color{Red} 6}\\ 3^4=8{\color{Red} 1}\\ 4^4=25{\color{Red} 6}\\ 5^4=62{\color{Red} 5}\\ 6^4=129{\color{Red} 6}\\ 7^4=240{\color{Red} 1}\\ 8^4=409{\color{Red} 6}\\ 9^4=656{\color{Red} 1}\\ 10^4=1000{\color{Red} 0}\\ 11^4=1464{\color{Red} 1}\\ 12^4=2073{\color{Red} 6}\\ ...$

conjecture : final decimal digit of the fourth power of an integer would be (0,1,6,5)

Proof :- let $n_i$ be any integer number s.t $i$ is number of digits then $n_i=a_{i-1} 10^{i-1}+a_{i-2}10^{i-2}+...+a_110^1+a_010^0$ ,s.t $a_j$ is unit digit

then $n_i \bmod 10=a_{i-1} 10^{i-1}+a_{i-2}10^{i-2}+...+a_110^1+a_010^0 \bmod 10= {\color{Red} {a_0}} \bmod 10$ thus :- $n_i^4\bmod 10 ={\color{Red} {a_0^4}} \bmod 10 $

but $ 0\le a_0 \le 9 $ so we would have 10 cases for $n_i^4\bmod 10$

by cases :-

$ n_i^4\bmod 10 = 0^4 \mod10 ={\color{Red} 0}\mod 10\\n_i^4\bmod 10 =1^4 \mod 10 ={\color{Red} 1}\mod 10\\ n_i^4\bmod 10 =2^4 \bmod 10= {\color{Red} 6}\bmod 10\\ n_i^4\bmod 10 =3^4\bmod 10= {\color{Red} 1}\bmod 10\\ n_i^4\bmod 10 =4^4\bmod 10= {\color{Red} 6}\bmod 10\\ n_i^4\bmod 10 =5^4\bmod 10= {\color{Red} 5}\bmod 10\\ n_i^4\bmod 10 =6^4\bmod 10= {\color{Red} 6}\bmod 10\\ n_i^4\bmod 10 =7^4\bmod 10= {\color{Red} 1}\bmod 10\\ n_i^4\bmod 10 =8^4\bmod 10= {\color{Red} 6}\bmod 10\\ n_i^4\bmod 10 =9^4\bmod 10= {\color{Red} 1}\bmod 10\\$

other method to prove it , $n_i^4=(n_i^2)^2$ and last digit of a square $\in \left \{ 0,1,4,9,5,6 \right \} $ so you would have 6 cases to check

$n_i^2\bmod 10 =0^2 \bmod 10= {\color{Red} 0}\bmod 10\\ n_i^2\bmod 10 =1^2\bmod 10= {\color{Red} 1}\bmod 10\\ n_i^2\bmod 10 =4^2\bmod 10= {\color{Red} 6}\bmod 10\\ n_i^2\bmod 10 =5^2\bmod 10= {\color{Red} 5}\bmod 10\\ n_i^2\bmod 10 =6^2\bmod 10= {\color{Red} 6}\bmod 10\\ n_i^2\bmod 10 =9^2\bmod 10= {\color{Red} 1}\bmod 10\\$

Related Question