[Math] Probability that sum of independent uniform variables is less than 1

probabilityprobability distributionsprobability theoryuniform distribution

I would like to determine the probability $\mathbb{P}(X_1+\dots+X_n\leq 1)$, where $X=(X_i)_{1\leq i\leq n}$ is a family of independent uniform random variables on $[0,1]$. My first idea is to do this by induction. The first three base cases are straightforward to determine and give us $\mathbb{P}(X_1\leq 1)=1$, $\mathbb{P}(X_1+X_2\leq 1)=\frac{1}{2}$ and $\mathbb{P}(X_1+X_2+X_3\leq 1)=\frac{1}{6}$, which suggests that $\mathbb{P}(X_1+\dots+X_n\leq 1)=\frac{1}{n!}$. Supposing this is true for a certain arbitrary integer $n$, I am having difficulties establishing the result for $n+1$, i.e. $\mathbb{P}(X_1+\dots+X_n+X_{n+1}\leq 1)=\frac{1}{(n+1)!}$. I believe the starting point should be:
$$\mathbb{P}(X_1+\dots+X_n+X_{n+1}\leq 1)=\mathbb{P}(X_1+\dots+X_n\leq 1-X_{n+1}),$$
and then somehow condition on $X_{n+1}$, but I am stuck at this point of the calculation. Any ideas of references to literature or even an alternative direct proof would be greatly appreciated.

Best Answer

Prove by induction the more general result: If $0\le t\le 1$, then $$ P(S_n\le t)=\frac{t^n}{n!}, $$ where $S_n$ denotes the sum $X_1+\cdots+X_n$. The base case $n=1$ is clear. If holds for $n$, then calculate for $0\le t\le 1$: $$ P(S_{n+1}\le t)=\int_0^1P(S_n+x\le t)f(x)dx\stackrel{(1)}=\int_0^t\frac{(t-x)^n}{n!}\,dx=\frac{t^{n+1}}{(n+1)!} $$ Note that in (1) the quantity $P(S_n\le t-x)$ is zero when $x>t$.