[Math] Positive Definite Matrix Norm

linear algebranormed-spacespositive definitereal-analysis

I am attempting to prove that a norm where for any $(k \times 1)$ vector x with $(1 \times k)$ transpose y:

$$
\|x\|=\sqrt{yVx}
$$

for some $(k \times k)$ positive definite (and symmetric) matrix $V$, is in fact a norm. Positive Definiteness and Homogeneity are quite trivial to prove, but I'm struggling with the triangle inequality.

Is it possible to prove the triangle inequality (easily?), or should I just prove this is an inner product instead(which I believe is a simpler task) and use that to say that it is a norm?

Thank you!

Best Answer

Denote $\| x \|_V = \sqrt{x^\top V x}$ and $\| x \|_2$ for the usual vector norm. We can write

$$ \| x + y \|^2_V = (x+ y)^\top V (x + y) = x^\top V x + y^\top V y + x^\top V y + y^\top V x \\ = \|x\|_V^2 + \|y\|_V^2 + 2 x^\top V y. $$ Now notice that since $V$ is symmetric positive definite, it admits a square root, i.e. $V = V^{1/2} V^{1/2}$. Using this and the Cauchy-Schwarz inequality one may write

$$ x^\top V y = x^\top V^{1/2} V^{1/2} y = (V^{1/2} x)^\top (V^{1/2} y) \leq \| V^{1/2} x\|_2 \| V^{1/2} y \|_2 $$

However, we know that $ \| z \|_2 = \sqrt{z^\top z}$, so replacing in the above expression we get

$$ 2 x^\top V y \leq \sqrt{x^\top V^{1/2} V^{1/2} x} \sqrt{y^\top V^{1/2} V^{1/2} y} = \sqrt{x^\top V x} \sqrt{y^\top V y} = 2 \| x \|_V \| y \|_V $$

Finally, this gives us

$$ \| x + y \|_V^2 \leq \|x \|_V^2 + \| y \|_V^2 + 2 \| x \|_V \| y \|_V = (\| x \|_V + \| y \|_V)^2 $$ so taking away the square gives us $ \| x + y \|_V \leq \| x \|_V + \| y \|_V $, as required.