Planar Graphs – Planar Graphs on Möbius Strips

general-topologygraph theoryplanar-graphs

Is there an easy way to tell if a graph can be embedded on a Möbius strip (with no edges crossing)?

A specific version of this: if a simple graph with an odd number of vertices has all vertices of degree 4, can it be embedded on a Möbius strip?


Answer summary:

I have not yet answered the second question, but Jim Belk's excellent explanation has given me good ideas.

Best Answer

Here is the answer by Jim Belk:

There are 35 different forbidden minors for the projective plane, and these have been computed explicitly. (See Mohar and Thomassen, pg. 198 for the complete list.)

This is for a projective plane. If a graph can be embedded in the projective plane, then just puncture a hole in the plane at some point you're not using for the embedding, and you've got an embedding in the Möbius band. And if it can be embedded in the Möbius band, then it can be embedded in the projective plane since the Möbius band is a subset of the projective plane.

In a sense maybe this doesn't fully answer the question. For planarity, it is necessary that the Euler characteristic be 2. Is that also sufficient? If so, you'd have a criterion that doesn't explicitly mention how many forbidden minors there are, or which graphs those are.

Related Question