Linear Algebra – Orthogonal Projection onto the L? Unit Ball

convex optimizationlinear algebraoptimization

What is the Orthogonal Projection onto the $ {\ell}_{\infty} $ Unit Ball?

Namely, given $ x \in {\mathbb{R}}^{n} $ what would be:

$$ {\mathcal{P}}_{ { \left\| \cdot \right\| }_{\infty} \leq 1 } \left( x \right) = \arg \min_{{ \left\| y \right\| }_{\infty} \leq 1} \left\{ {\left\| y – x \right\|}_{2}^{2} \right\} $$

I managed to get an answer using the Moreau Decomposition.
Yet I would be happy to see if someone can derive the answer directly.

Thank You.

Best Answer

By Moreau Decomposition:

$$ {\text{Prox}}_{f} \left( x \right) + {\text{Prox}}_{ {f}^{\ast} } \left( x \right) = x $$

For $ f \left( x \right) = \left\| \cdot \right\| $ the conjugate is given by the Projection onto the Dual Norm $ {f}^{\ast} \left( x \right) = {\mathcal{P}}_{ { \left\| \cdot \right\| }_{\infty} \leq 1 } \left( x \right) $.

Hence, for $ f \left( x \right) = { \left\| x \right\| }_{1} $ one would get

$$ {\text{Prox}}_{ {\left\| \cdot \right\| }_{1} } \left( x \right) = x - {\mathcal{P}}_{ { \left\| \cdot \right\| }_{\infty} \leq 1 } \left( x \right) $$

It is known that the $ \text{Prox} $ Operator for the $ {\ell}_{1} $ is given by Soft Threshold, thus:

$$ {\text{Prox}}_{ {\left\| \cdot \right\| }_{1} } { \left( x \right) }_{i} = \begin{cases} {x}_{i} - 1, & \text{if} & {x}_{i} \geq 1 \\ {x}_{i} - {x}_{i}, & \text{if} & \left | {x}_{i} \right | < 1 \\ {x}_{i} - \left( -1 \right), & \text{if} & {x}_{i} \leq -1 \end{cases} \Rightarrow {\mathcal{P}}_{ { \left\| \cdot \right\| }_{\infty} \leq 1 } \left( x \right) = \begin{cases} 1, & \text{if} & {x}_{i} \geq 1 \\ {x}_{i}, & \text{if} & \left | {x}_{i} \right | < 1 \\ -1, & \text{if} & {x}_{i} \leq -1 \end{cases} $$

Related Question