[Math] Orthogonal projection and reflection matrix

linear algebra

Let $A$ represent orthogonal projection onto the plane $x+y+z=0$ and $B$ represent the reflection in the plane $x+y+z=0$. Determine $3\times 3$ matrix $A$ and $B$. All I know is that $A^2=A$. So in general how would you determine $A$ and $B$ if they are projection/reflection in the plane $ax+by+cz=0$?

Best Answer

To calculate the projection matrix you need to calculate the projection of the canonical basis $\{ e_1=(1,0,0), e_2=(0,1,0), e_3=(0,0,1)\}$ and we know that the plane $P=\{ax+by+cz=0 \}$ is equal to $Vect\{ v_1=(-b,a,0), v_2=(-c,0,a) \}$ in this case we need an orthonormal basis so we construct it by Gram-Schmidt process and we have $$ P=Vect\{f_1=(\frac{-b}{\sqrt{a^2+b^2}},\frac{a}{\sqrt{a^2+b^2}},0); f_2=(\frac{-a^2c}{\alpha},\frac{-abc}{\alpha},\frac{a^3+ab^2-bc}{\alpha})\} $$ With $\alpha=\sqrt{(a^2c)^2+(abc)^2+(a^3+ab^2-bc)^2}$ a normalisation constant.

So the projection of $X=(x,y,z)$ on $P$ is equal to $<X,f_1>f_1 +<X,f_2>f_2$ so in this case :

$$\left\{ \begin{array}{c} A(e_1)&=&<e_1,f_1>f_1 +<e_1,f_2>f_2&=&\frac{-b}{\sqrt{a^2+b^2}} f_1 -\frac{a^2c}{\alpha} f_2&=&(\frac{b^2}{a^2+b^2}+\frac{(a^2c)^2}{\alpha^2},\frac{-ab}{a^2+b^2}-\frac{a^3 bc^2}{\alpha^2},\frac{-a^2c(a^3+ab^2-bc)}{\alpha^2})\\ A(e_2)&=&<e_2,f_1>f_1 +<e_2,f_2>f_2&=&\frac{a}{\sqrt{a^2+b^2}} f_1-\frac{abc}{\alpha}f_2 &=&(\frac{-ab}{a^2+b^2}+\frac{a^3 bc^2}{\alpha^2},\frac{a^2}{a^2+b^2}+\frac{(abc)^2}{\alpha^2},\frac{-abc(a^3+ab^2-bc)}{\alpha^2})\\ A(e_3)&=&<e_3,f_1>f_1 +<e_3,f_2>f_2&=& \frac{a^3+ab^2-bc}{\alpha} f_2&=&(\frac{-a^2c(a^3+ab^2-bc)}{\alpha^2},\frac{-abc(a^3+ab^2-bc)}{\alpha^2},\frac{(a^3+ab^2-bc)^2}{\alpha^2}) \end{array}\right. $$ and finally the matrix is : $$A=\left( \begin{matrix} \frac{b^2}{a^2+b^2}+\frac{(a^2c)^2}{\alpha^2} & \frac{-ab}{a^2+b^2}+\frac{a^3 bc^2}{\alpha^2}& \frac{-a^2c(a^3+ab^2-bc)}{\alpha^2}\\ \frac{-ab}{a^2+b^2}-\frac{a^3 bc^2}{\alpha^2} &\frac{a^2}{a^2+b^2}+\frac{(abc)^2}{\alpha^2} &\frac{-abc(a^3+ab^2-bc)}{\alpha^2}\\ \frac{-a^2c(a^3+ab^2-bc)}{\alpha^2} &\frac{-abc(a^3+ab^2-bc)}{\alpha^2} &\frac{(a^3+ab^2-bc)^2}{\alpha^2} \end{matrix}\right) $$

For $B$ we know that $B=2A-I_3$ so : $$B=\left( \begin{matrix} \frac{2b^2}{a^2+b^2}+\frac{2(a^2c)^2}{\alpha^2}-1 & \frac{-2ab}{a^2+b^2}+\frac{2a^3 bc^2}{\alpha^2}& \frac{-2a^2c(a^3+ab^2-bc)}{\alpha^2}\\ \frac{-2ab}{a^2+b^2}-\frac{2a^3 bc^2}{\alpha^2} &\frac{2a^2}{a^2+b^2}+\frac{2(abc)^2}{\alpha^2}-1 &\frac{-2abc(a^3+ab^2-bc)}{\alpha^2}\\ \frac{-2a^2c(a^3+ab^2-bc)}{\alpha^2} &\frac{-2abc(a^3+ab^2-bc)}{\alpha^2} &\frac{2(a^3+ab^2-bc)^2}{\alpha^2}-1 \end{matrix}\right) $$