[Math] optimization volume of the largest rectangular box

calculusoptimization

Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes, and one vertex in the plane x +3 y + 6 z = 18

Best Answer

Pick a point $A = (x,y,z)$ on the plane so that $x + 3y + 6z = 18$.

The volume $V$ of the box is $V = xyz$. So we find $max(V)$ with conditions $x + 3y + 6z = 18$ and $x, y, z \in \mathbb{R}^{\text{nonneg}}$.

Use $g(x,y,z) = x + 3y + 6z = 18$. So

$$V'(x) = yz = rg'(x) = r$$

$$V'(y) = xz = rg'(y) = 3r$$

$$V'(z) = xy = rg'(z) = 6r$$

This means $xz = 3yz , xy = 6yz \Rightarrow z(x - 3y) = 0, y(x - 6z) = 0$.

If $z = 0$ or $y = 0$, then $V = 0$ and is not a max. So $$x - 3y = 0 = x - 6z \Rightarrow y = \frac{x}{3}, z = \frac{x}{6}$$

$$\Rightarrow x + 3\left(\frac{x}{3}\right) + 6\left(\frac{x}{6}\right) = 18$$

$$\Rightarrow 3x = 18 \Rightarrow x = 6, y = 2, z = 1$$ So $max(V) = 6*2*1 = 12$.

Related Question