[Math] Number of elements of each order in a cyclic group

cyclic-groupsfinite-groups

Theorem:

If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\phi \left ( d \right )$ where $\phi$ is the euler-phi function defined as the number of elements less than d and relatively prime to d. This by definition is $gcd\left ( d,n\right ) \equiv \phi\left ( d \right )$

The author provides the proof as follows.
Proof:
By the Fundamental theorem of cyclic group, there exists exactly one subgroup of order d-say, $\left \langle a \right \rangle$.

Then, every element of order d also generates the subgroup $\left \langle a \right \rangle$

The proof continues.

There is an underlying subtlety with the bold. I am unsure if my understanding of the bold is correct.

Note: $\left | a \right |=\left | \left \langle a \right \rangle \right |=d$.

This implies $a=\left \langle a \right \rangle$. Thus, a has order d and any element of order d generates $\left \langle a \right \rangle$

Best Answer

If $C$ is the unique subgroup of order $d$ and $g$ is any element of order $d$, then $|\langle g\rangle|=|C|$ implies $\langle g\rangle=C$ implies $g\in C$. If this is what you mean, then yes.

Related Question