Linear Algebra – Null Space for $AA^{T}$ and $A^{T}$

linear algebra

$A$ is an $n\times m$ matrix and $AA^{T}$ is a symmetric real matrix.
Also, we have: $\operatorname{rank}(AA^{T})=r\stackrel{?}{=}\operatorname{rank}(A)$.
Let $Q= \begin{Bmatrix} q_1,…,q_{n-r} \end{Bmatrix}$ be a basis for the Null space of $AA^{T}$. i.e. $AA^{T}q_i=0$, show that $A^{T}q_i=0$.
I guess one proof can be that the Null space for $A^{T}$ is a subspace for Null space for $AA^{T}$, then the question would be why $\operatorname{rank}(A)=\operatorname{rank}(AA^{T})$?

Best Answer

Let $q_i$ be a null vector of $A A^\top$, i.e. $ A A^\top q_i =0 $, then $ 0 = q_i^\top A A^\top q_i = \vert\vert A^\top q_i \vert\vert_2$, and thus $q_i$ is also a null vector of $A^\top$. Thus $\mathrm{rank}(A A^\top) = \mathrm{rank}(A^\top) = \mathrm{rank}(A)$.

Related Question