[Math] Norm of bounded operator on a complex Hilbert space.

analysisfunctional-analysisoperator-theoryreal-analysis

It is fairly easy to show that for a bounded linear operator $T$ on a Hilbert space $H$ $$||T||=\sup_{||x||=1,||y||=1}|\langle y, Tx \rangle |.$$
If $H$ is a complex Hilbert space, can you show that
$$||T||=\sup_{||x||=1}|\langle x, Tx \rangle |\;?$$

Best Answer

Yes, if the operator is self-adjoint. Here is a proof from Conway's book, A Course in Functional Analysis:

Let $M = \{\sup |\langle Ax, x\rangle| : \|x\| = 1\}$. If $\|x\| = 1$, then $|\langle Ax,x\rangle | \leq \|A\|$ (since this holds for all pairs of vectors, so certainly works if we use the same in each slot), so $M \leq \|A\|$.

Now let $h,g$ be unit vectors. Self-adjointness gives $$\langle A(h \pm g) , h \pm g\rangle = \langle Ah,h\rangle \pm 2\mbox{Re}\langle Ah,g\rangle + \langle Ag,g \rangle.$$ Subtracting these equations gives $$\langle A(h + g), h + g \rangle - \langle A(h-g), h-g \rangle = 4 \mbox{Re} \langle Ah,g \rangle.$$ Since $|\langle Af, f \rangle| \leq M\|f\|^2$ for any $f$, by Cauchy-Schwarz, we have using the parallelogram law that \begin{align*}&4\mbox{Re}\langle Ah,g\rangle \\\leq &M(\|h + g\|^2 + \|h-g\|^2) \\ =&2M(\|h\|^2 + \|g\|^2) \\ = &4M. \end{align*}

To finish up, choose $e^{i\theta}$ so that $\mbox{Re}(e^{i\theta}\langle Ah, g\rangle) = |\langle Ah,g \rangle|$. Then $$|\langle Ah, g \rangle| = \mbox{Re}(\langle Ae^{i\theta}h, g\rangle ) \leq M.$$ Take the supreumum over all $h,g$ to finish.

Related Question