[Math] Negate the following statements formally so that **no negation symbol remains:**

logic

Negate the following statements formally so that no negation symbol remains:

(i) $ \ \ \forall y \exists x (y>0 \to x \leq 0 ) \ $

(ii) $ \ \forall x \forall y \exists z(x <z \leq y ) \ $

Answer:

My approach is as follows:

(i)

The negation of the statements in (i) without negation symbol is

$ \exists y \ \ s.t. \ \ \forall x (x>0 \to y \leq 0) \ $

(ii)

Given

$ \forall x \forall y \ \exists z \ ( x <z \leq y ) \ \\\sim \forall x \forall y \ \exists z \ ( x <z \wedge z \leq y ) $

The negation is given as

$ \exists x \exists y \ \ s.t. \ \ \forall z \ ( x \geq z \wedge z > y ) $

Am I true ?

Is there any help ?

Best Answer

For both problems we start by using $\neg(\forall xP(x))\equiv\exists x(\neg P(x))$ and then $\neg(\exists xP(x))\equiv\forall x(\neg P(x))$.

(i) Negate $\forall y\exists x(y>0\to x\leq 0)$.

First we get: $$\exists y\forall x(\neg(y>0\to x\leq 0))$$ Next we note that $A\to B\equiv \neg A\vee B$: $$\exists y\forall x(\neg(y<0\vee x\leq 0))$$ Then apply DeMorgan's Law to finish: $$\exists y\forall x(y>0\wedge x\geq 0)$$

(ii) Negate $\forall x\forall y\exists z(x<z\leq y)$. First we get: $$\exists x\exists y\forall z(\neg(x<z\leq y))$$ Split the compound inequality: $$\exists x\exists y\forall z(\neg(x<z\wedge z\leq y))$$ Then apply DeMorgan's Law to finish: $$\exists x\exists y\forall z(x>z\vee z\geq y)$$