[Math] Natural number which can be expressed as sum of two perfect squares in two different ways

elementary-number-theorynumber theorysums-of-squares

Ramanujan's number is $1729$ which is the least natural number which can be expressed as the sum of two perfect cubes in two different ways. But can we find a number which can be expressed as the sum of two perfect squares in two different ways. One example I got is $50$ which is $49+1$ and $25+25$. But here second pair contains same numbers. Does any one have other examples ?

Best Answer

Note that $a^2 + b^2 = c^2 + d^2$ is equivalent to $a^2 - c^2 = d^2 - b^2$, i.e. $(a-c)(a+c) = (d-b)(d+b)$. If we factor any odd number $m$ as $m = uv$, where $u$ and $v$ are both odd and $u < v$, we can write this as $m = (a-c)(a+c)$ where $a = (u+v)/2$ and $c = (v-u)/2$. So any odd number with more than one factorization of this type gives an example.

Thus from $m = 15 = 1 \cdot 15 = 3 \cdot 5$, we get $8^2 - 7^2 = 4^2 - 1^2$, or $1^2 + 8^2 = 4^2 + 7^2$.

From $m = 21 = 1 \cdot 21 = 3 \cdot 7$ we get $11^2 - 10^2 = 5^2 - 2^2$, or $2^2 + 11^2 = 5^2 + 10^2$.

Related Question