Algebra Precalculus – Name for Strange Solution to Quadratic Equation Involving Square Root

algebra-precalculusfaqradicals

Here's an elementary question on solving the following quadratic equation (well, it's not a quadratic until the square root is eliminated):

$$\sqrt{x+5} + 1 = x$$

Upon solving the above equation either using the method of factoring or the quadratic formula (after squaring both sides) you get $x = 4$ and $x = -1$. If you plug in $x = 4$ in the original equation, it checks out. However $x = -1$ doesn't work. You'll end up getting $3 = -1$ which is not true (in other words the LHS does not equal the RHS).

Is this still considered a solution/root of this particular equation? Does it have a special name?

Best Answer

Generally speaking, the problem arises because squaring is not a "reversible" operation. That is, while it is true that if $a=b$ then $a^2=b^2$, it is not true that if $a^2=b^2$ then $a=b$. (For instance, even though $(-1)^2=1^2$, it does not follow that $-1=1$)

This is in contrast to other kinds of equation manipulations that we use routinely when we solve equations. For example, if $a=b$, then $a+k=b+k$, and conversely: if $a+k=b+k$, then $a=b$. So we can add to both sides of an equation (for instance, you can go from $\sqrt{x+5}+1 = x$ to $\sqrt{x+5}=x-1$ by adding $-1$ to both sides) without changing the solution set of the equation. Likewise, we can multiply both sides of an equation by a nonzero number, because $a=b$ is true if and only if $ka=kb$ is true when $k\neq 0$. We can also take exponentials (since $a=b$ if and only if $e^a=e^b$) and so on.

But squaring doesn't work like that, because it cannot be "reversed". If you try to reverse the squaring, you run into a rather big problem; namely, that $\sqrt{x^2}=|x|$, and is not equal to $x$.

So when you go from $\sqrt{x+5} = x-1$ to $(\sqrt{x+5})^2 = (x-1)^2$, you are considering a new problem. Anything that was a solution to the old problem ($\sqrt{x+5}=x-1$) is still a solution to the new one, but there may be (and in fact are) things that are solutions to the new problem that do not solve the old problem.

Any such solutions (solutions to the new problem that are not solutions to the original problem) are sometimes called "extraneous solutions". Extraneous means "coming from the outside". In this case, it's a solution that comes from "outside" the original problem.

Related Question