Calculus – Multiple Choice Question About Generating Function of a Sequence

analysiscalculusgenerating-functionssequences-and-series

Suppose $\left\{a_n\right\}_{n=0}^{\infty}$ is sequence .
and we have below recursion relation$$\begin{cases}a_n=\sum_{k=0}^{n-1}a_ka_{n-k-1}\\\\a_0=1\end{cases}$$

If $f(x)=\sum_{n=0}^{\infty}a_nx^n$ is generating function of $a_n$ which one is correct .

$$1)\space f^2(x)+xf(x)-1=0\\
2)\space f^2(x)-xf(x)+1=0 \\
3)\space xf^2(x)+f(x)-1=0 \\
4)\space xf^2(x)-f(x)+1=0 $$
I am sorry to ask this question , But as honestly as possible it was my student's question. I forgot this type of question . Can you help me or give me a clue .
Thanks in advanced.

Best Answer

Multiply the recurrence formula by $x^n$ and rewrite it like this \begin{eqnarray*} a_n x^n = x \sum_{k=0}^{n-1} a_k x^k \; \; a_{n-k-1} x^{n-k-1} \end{eqnarray*} Now sum on $n$ (starting from $1$) \begin{eqnarray*} \sum_{n=1}^{\infty} a_n x^n = x \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} a_k x^k \; \;a_{n-k-1} x^{n-k-1}. \end{eqnarray*} Invert the sums (Draw your student a grid of the points ... to convince them that the sums interchange as follows) \begin{eqnarray*} \sum_{n=1}^{\infty} a_n x^n = x \sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty} a_k x^k \; \; a_{n-k-1} x^{n-k-1}. \end{eqnarray*} Make the change of variable $m=n-k-1$ & we have \begin{eqnarray*} \sum_{n=1}^{\infty} a_n x^n = x \sum_{k=0}^{\infty} a_k x^k \sum_{m=0}^{\infty} a_{m} x^{m}. \end{eqnarray*} & finally add $1$ to both sides ... none of the above ?

Related Question