Abstract Algebra – Motivation for Proof of Eisenstein’s Criterion

abstract-algebrairreducible-polynomialsmotivationpolynomialsunique-factorization-domains

I have been thinking about this for quite sometime.

  • Eisentein Criterion for Irreducibility: Let $f$ be a primitive polynomial over a unique factorization domain $R$, say
    $$f(x)=a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \;.$$
    If $R$ has an irreducible element $p$ such that
    $$p\mid a_m\ \text{ for all }\ 0\le m\le n-1$$
    $$p^2 \nmid a_0$$
    $$p \nmid a_n$$
    then $f$ is irreducible.

Can anyone give me an explanation of how one might have conjectured this problem? Thinking along, the same lines the first polynomial which came to my mind was $x^{2}+1 \in \mathbb{R}[x]$ which is irreducible. But there are lots of polynomials and it's very difficult to think of a condition, which would make them irreducible.

Best Answer

The point is this: if $R \to S$ is a homomorphism and the image of $f$ is irreducible in $S[x]$, then $f$ must also be irreducible in $R[x]$ (since any factorization of $f$ in $R[x]$ maps to a factorization of $f$ in $S[x]$). This idea gets to the heart of what the point of homomorphisms is: they are maps that send algebraic statements ($f$ has a factorization) to other algebraic statements.

I guess the best motivated way to approach this is to make two choices for $S$. First we choose $S = \mathbb{Z}/p\mathbb{Z}$. This is a surprisingly useful choice for specific polynomials, especially of low degree (it works for some prime $p$ if and only if the Galois group of the polynomial $f$ contains a $\deg f$-cycle, which always happens in degree $2, 3$ and is still very likely in higher degrees). For example the polynomial $x^3 - x + 1$ must be irreducible because it has no roots $\bmod 2$.

At some point we might encounter a polynomial like $x^3 - 2x - 2$. Now this polynomial is reducible $\bmod 2$ since it factors as $x^3 = x \cdot x \cdot x$, but this implies that if $x^3 - 2x - 2$ had an actual factorization $fg$ in the integers then $f, g$ would both have to have all their non-leading terms divisible by $2$, hence the constant term of $fg$ is divisible by $4$; contradiction. Eisenstein's criterion is a simple generalization of this example; it corresponds to choosing $S = \mathbb{Z}/p^2\mathbb{Z}$ or $S = \mathbb{Z}_p$.

Nowadays it is understood that Eisenstein's criterion is really a statement about total ramification, but my guess is that this was not known when it was first written down. My guess is that Eisenstein wrote down this criterion for the sole purpose of proving that the cyclotomic polynomials $\Phi_p(x) = x^{p-1} + ... + 1$ are irreducible, and here it is very natural to think about what happens $\bmod p$ since $(x - 1) \Phi_p(x) = x^p - 1$ splits into linear factors $\bmod p$ by Fermat's little theorem. It is not a big leap from here to the general Eisenstein criterion.

Related Question