[Math] Minkowski inequality of infinite sum

inequalityintegral-inequalitylebesgue-integralreal-analysis

For $1\leq p <\infty,$
Given $\{f_n\}^{\infty}_{n=1}$ be a sequence of function in $L^{p}(\mathbb{R}).$
Show that $\left\Vert \sum\limits_{n=1}^\infty f_n\right\Vert_p \leq \sum\limits_{n=1}^\infty \left\Vert f_n\right\Vert_p$.
(Minkowski inequality can be used.)

The hint is too use monotone and dominated convergence theorem

Clearly, $\left\Vert \sum\limits_{n=1}^m f_n\right\Vert_p \leq \sum\limits_{n=1}^m \left\Vert f_n\right\Vert_p $ $\forall m \in\mathbb{N}$.
The question is how can I pass the limit into the norm on the left.

More precisely, how to use the monotone and dominated convergence theorem?
What is the dominate function?

Best Answer

Consider using Fatou's lemma instead. Let $s_n := \left|\sum\limits_{k = 1}^n f_k\right|^p$. By Fatou's lemma, $$\left\|\sum_{n = 1}^\infty f_n\right\|_p^p = \|\lim_{n\to \infty} s_n\|_1 \le \varliminf_{n\to \infty} \|s_n\|_1 = \varliminf_{n\to \infty} \left\|\sum_{k = 1}^n f_k\right\|_p^p.$$ Therefore $$\left\|\sum_{n = 1}^\infty f_n\right\|_p \le \varliminf_{n\to \infty} \left\|\sum_{k = 1}^n f_k\right\|_p.$$ By Minkowski's inequlity,

$$\varliminf_{n\to \infty} \left\|\sum_{k = 1}^n f_k\right\|_p \le \varliminf_{n\to \infty} \sum_{k = 1}^n \|f_k\|_p = \sum_{n = 1}^\infty \|f_n\|_p.$$

Hence

$$\left\|\sum_{n = 1}^\infty f_n\right\|_p \le \sum_{n = 1}^\infty \|f_n\|_p.$$