[Math] Mean distance from origin after $N$ equal steps of Random-Walk in a $d$-dimensional space.

random walkreference-request

I am looking for a formula that evaluates the mean distance from origin after $N$ equal steps of Random-Walk in a $d$-dimensional space.
Such a formula was given by "Henry" to a question by "Diego" (q/103170)

$$\sqrt{\dfrac{2N}{d}} \dfrac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})}$$

I will be very gratefull if you can give me reference to an article that show how this formula was derived. Thanks!

Best Answer

The formula is not exact, but asympotically. Informally: let $z_i = x_i - y_i$ be the $i$-th coordinate after $N$ steps, with $x_i$ ($y_i$) be the number of steps in positive (negative) direction. When $N$ is large, $\{x_i,y_i\}$ tend to iid Poisson variables, with $\lambda=E(x_i) = \frac{N}{2 d} = Var(x_i)$. Applying the CLT, $z_i$ approaches a normal distribution with zero mean and variance $Var(x_i)+Var(y_i)=\frac{N}{d}$.

We are interested in $E(\sqrt{z_1^2 + \cdots z_d^2})$. But the square root of a sum of $d$ normals $N(0,\sigma^2)$ follows a Chi distribution, with mean $\sqrt{2 \sigma^2} \dfrac{\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})}$ From this, you get the desired formula.

Related Question