[Math] Matrix norm inequality proof: inverse of two p.s.d matrices sum

linear algebramatricesnormed-spaces

I wonder if the following matrix norm inequality holds:
Let $A$ and $B$ are both strictly symmetric positive definite matrix
$\|(A+B)^{-1}\|_2\leq \|A^{-1}\|_2$ ?

Thanks in advance.

Best Answer

If $\|\cdot\|_2$ denotes the maximum singular value, then it can be proved as follows.

The inequality in the original problem is equivalent to showing $$ \sigma_{\max}((A+B)^{-1})\le \sigma_{\max}(B^{-1}) \Leftrightarrow \frac{1}{\sigma_{\min}(A+B)}\le \frac{1}{\sigma_{\min}(B)} \Leftrightarrow \sigma_{\min}(B)\le\sigma_{\min}(A+B) $$ Since $A$ is PD, the last inequality above is easy to prove (consider the eigenvector for the minimum eigenvalue of $A+B$, then $\sigma_{\min}(A+B)=x^T(A+B)x\ge x^TBx\ge \sigma_{\min}(B))$.

Related Question