[Math] LTI system state transition matrix

linear algebra

I'm having troubling understanding the steps for finding a state transition matrix of a linear time-invariant state space system of the form:

$\begin{bmatrix}
\dot{x_1} \\
\dot{x_2} \\
\dot{x_3}
\end{bmatrix} = \begin{bmatrix}
-1 & 0 & 0 \\
3 & -3 & 0 \\
-1 & -1 & -5
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} $

I have in my notes that the state transition matrix for an LTI system is simply:

$e^{At}$

where the numerical matrix is A. But I also have in my notes that evaluating $e^{At}$ is not straightforward, but I should instead evaluate it as:

$e^{At} = Me^{Jt}M^{-1}$

Where M is a "modal" matrix (concatenated column of eigenvectors), not really sure what $e^{Jt}$ is but in my notes I have:

$e^{Jt} = \begin{bmatrix}
e^t & te^t & \frac{t^2e^t}{2} \\
0 & e^t & te^t \\
0 & 0 & e^t
\end{bmatrix} $

So I go through the steps of finding eigenvalues and vectors, apply the form but I am informed that it's incorrect. Is my approach correct?

Best Answer

Alternative method 1: A different method is to use the Laplace transform. If you apply the Laplace transform to

$$\dot{\boldsymbol{x}}=\boldsymbol{Ax}$$

you will obtain

$$s\boldsymbol{X}(s)-\boldsymbol{x}(0)=\boldsymbol{AX}(s) \implies \boldsymbol{X}(s)=\left[s\boldsymbol{I}-\boldsymbol{A} \right]^{-1}\boldsymbol{x}(0).$$

If we apply the Laplace inverse we obtain

$$\boldsymbol{x}(t)=\mathcal{L}^{-1}\left\{\left[s\boldsymbol{I}-\boldsymbol{A} \right]^{-1}\right\}\boldsymbol{x}(0).$$

The state transition matrix $\boldsymbol{\Phi}$ is then given by

$$\boldsymbol{\Phi}(t,0)=\mathcal{L}^{-1}\left\{\left[s\boldsymbol{I}-\boldsymbol{A} \right]^{-1}\right\}$$


Alternative method 2: You can solve the system explicitly determining the eigenvalues $\lambda_i$ (Note, that we have three distinct eigenvalues which are on the diagonal of the system matrix) and eigenvectors $\boldsymbol{v}_i$. The general solution is then given as

$$\boldsymbol{x}(t)=c_1\boldsymbol{v}_1\exp(\lambda_1 t)+c_2\boldsymbol{v}_2\exp(\lambda_2 t)+c_3\boldsymbol{v}_3\exp(\lambda_3 t).$$

The fundamental solution $\boldsymbol{Y}$ is given as the matrix

$$\boldsymbol{Y}(t)=\begin{bmatrix} \boldsymbol{v}_1\exp(\lambda_1 t) & \boldsymbol{v}_2\exp(\lambda_2 t) & \boldsymbol{v}_3\exp(\lambda_3 t)\\ \end{bmatrix}.$$

The state Transition matrix $\boldsymbol{\Phi}$ is given as

$$\boldsymbol{\Phi}(t,t'=0)=\boldsymbol{Y}(t)\boldsymbol{Y}^{-1}(t'=0).$$

Note, that we have to invert a $3\times 3$ matrix in the second term.