Functional Analysis – Lower Semicontinuity of Indicator Function

functional-analysisoptimization

For any set $\mathcal{S} \subseteq \mathbb{R}^{N}$, let us define the indicator function $$\delta_{\mathcal{S}}(\mathbf{x}) \triangleq \begin{cases}
0, & \quad \textrm{if } \mathbf{x} \in \mathcal{S} \\
\infty, & \quad \textrm{otherwise}.
\end{cases}$$

Is this function lower semicontinuous? I suppose it is if the set $\mathcal{S}$ is closed, but I'm not absolutely sure.

Best Answer

You are right. Lower semicontinuity is equivalent to: $$ \forall x \ \ \ \{ y| \delta_S(y)\le x \} $$is closed.

Let us prove this from OP's definition:

$\delta_S$ is lsc iff $\forall x\ \liminf_x \delta_S = \delta_S(x)$

  • if $\liminf_x \delta_S = \delta_S(x)$, then let $(y_n)\in \{ y| \delta_S(y)\le x\}^{\Bbb N}$ a convergent sequence. $$ \delta_S(y_n)\le x\\ $$and as $n\to\infty$: $$ \delta_S(y) = \liminf \delta_S(y_n) \le x \\ $$ so $\{ y| \delta_S(y)\le x\}^{\Bbb N}$ is closed.
  • if $\forall x \ \ \ \{ y| \delta_S(y)\le x\}$ is closed: let $x_n \to x$ a sequence such as $\delta_S(x_n)\to \liminf_x \delta_S $. For $u$ close enough to $x\in \{ y| \delta_S(y)> \delta_S(x) - r\}$ which is an open set, $$ \delta_S(u)> \delta_S(x) - r \\ \liminf \delta_S = \lim \delta_S(x_n) \ge \delta_S(x) - r $$ so $$ \liminf \delta_S\ge \delta_S(x) $$ and there is equality (the other inequality is always true).

Here this set is $\emptyset$ or $S$, so lower semicontinuity is equivalent to: $S$ is closed.

Related Question