[Math] Logic question: Ant walking a cube

graph theoryprobability

There is a cube and an ant is performing a random walk on the edges where it can select any of the 3 adjoining vertices with equal probability. What is the expected number of steps it needs till it reaches the diagonally opposite vertex?

Best Answer

Extending to $d$-dimensions

So I had enough time to procrastinate today and I extended this problem to $d$ dimensions. I would appreciate if someone could read through the answer and suggest any simplification to final answer if possible. Do the final numbers $u_n$ constitute a nice well known sequence? Further, what other interesting problems arise out this ant and the cube problem. I think another nice problem is the expected cover time. Thanks

Working out explicitly for $d=3$ gave some nice hints and a good picture of what is going on. We use these to extend to any d-dimension.

The first thing is to define a cube in $d$-dimensions. A $\mathbf{d}$-dimensional cube is a set of vertices of the form $(i_1,i_2,\ldots,i_d)$ where $i_k \in \{0,1\}$. There is an edge between vertex $(i_1,i_2,\ldots,i_d)$ and vertex $(j_1,j_2,\ldots,j_d)$ if $\exists l$ such that $\left | i_l - j_l \right| = 1$ and $i_k = j_k$, $\forall k \neq l$.

Two vertices are said to be adjacent if they share an edge. It is easy to note that every vertex shares an edge with $d$ vertices. (Consider a vertex $(i_1,i_2,\ldots,i_d)$. Choose any $i_k$ and replace $i_k$ by $1-i_k$. This gives an adjacent vertex and hence there are $d$ adjacent vertices as $k$ can be any number from $1$ to $d$). Hence, the probability that an ant at a vertex will choose an edge is $\frac1{d}$.

For every vertex, $(i_1,i_2,\ldots,i_d)$ let $s((i_1,i_2,\ldots,i_d)) = \displaystyle \sum_{k=1}^d i_k$. Note that $s$ can take values from $0$ to $d$. There are $\binom{d}{r}$ vertices such that $s((i_1,i_2,\ldots,i_d)) = r$.

Let $v_{(i_1,i_2,\ldots,i_d)}$ denote the expected number of steps taken from $(i_1,i_2,\ldots,i_d)$ to reach $(1,1,\ldots,1)$

Let $S_r = \{ (i_1,i_2,\ldots,i_d) \in \{0,1\}^d: s((i_1,i_2,\ldots,i_d)) = r\}$

Claim: Consider two vertices say $a,b \in S_r$. Then $v_a = v_b$. The argument follows easily from symmetry. It can also be seen from writing down the equations and noting that the equations for $a$ and $b$ are symmetrical.

Further note that if $a \in S_r$, with $0 < r < d$, then any adjacent vertex of $a$ must be in $S_{r-1}$ or $S_{r+1}$. Any adjacent vertex of $(0,0,\ldots,0)$ belongs to $S_1$ and any adjacent vertex of $(1,1,\ldots,1)$ belongs to $S_{d-1}$. In fact, for any $a \in S_r$, $r$ adjacent vertices $\in S_{r-1}$ and $d-r$ adjacent vertices $\in S_{r+1}$.

Let $u_r$ denote the expected number of steps from any vertex $\in S_r$ to reach $(1,1,\ldots,1)$. For $r \in \{1,2,\ldots,d-1\}$, we have \begin{align} u_r & = 1 + \frac{r}{d} u_{r-1} + \frac{d-r}{d} u_{r+1} & r \in \{1,2,\ldots,d-1\}\\\ u_0 & = 1 + u_1 & r = 0\\\ u_d & = 0 & r = d \end{align} Setting up a matrix gives us a tai-diagonal system to be solved. Instead, we go about solving this as follows.

Let $p_r = \frac{r}{d}$, $\forall r \in \{1,2,\ldots,d-1\}$. Then the equations become \begin{align} u_r & = 1 + p_r u_{r-1} + (1-p_r) u_{r+1} & r \in \{1,2,\ldots,d-1\}\\\ u_0 & = 1 + (1-p_0) u_1 & r = 0\\\ u_d & = 0 & r = d \end{align} Let $a_{r} = u_{r+1} - u_r$. Then we get \begin{align} p_r a_{r-1} & = 1 + (1-p_r)a_r & r \in \{1,2,\ldots,d-1\}\\\ a_0 & = -1 & r = 0 \end{align} Note that $u_m = - \displaystyle \sum_{k=m}^{d-1} a_k$ and $u_d = 0$ \begin{align} a_0 & = -1 & r = 0\\\ a_{r} & = \frac{p_r}{1-p_r} a_{r-1} - \frac1{1-p_r} & r \in \{1,2,\ldots,d-1\} \end{align} Let $l_r = \frac{p_r}{1-p_r} = \frac{r}{d-r}$ \begin{align} a_0 & = -1 & r = 0\\\ a_{r} & = l_r a_{r-1} - (1+l_r) & r \in \{1,2,\ldots,d-1\} \end{align} \begin{align} a_1 &= l_1 a_0 - (1+l_1)\\\ a_2 & = l_2 l_1 a_0 - l_2(1+l_1) - (1+l_2)\\\ a_3 & = l_3 l_2 l_1 a_0 - l_3 l_2 (1+l_1) - l_3 (1+l_2) - (1+l_3)\\\ a_m & = \left( \prod_{k=1}^{m} l_k \right) a_0 - \displaystyle \sum_{k=1}^{m} \left((1+l_k) \left( \prod_{j=k+1}^m l_j \right) \right) \end{align} Since $a_0 = -1$ and $l_0 = 0$, we get \begin{align} a_m & = - \displaystyle \sum_{k=0}^{m} \left((1+l_k) \left( \prod_{j=k+1}^m l_j \right) \right) \end{align} Hence, \begin{align} u_n & = - \displaystyle \sum_{m=n}^{d-1} a_m\\\ u_n & = \displaystyle \sum_{m=n}^{d-1} \left( \displaystyle \sum_{k=0}^{m} \left((1+l_k) \left( \prod_{j=k+1}^m l_j \right) \right) \right)\\\ u_n & = \displaystyle \sum_{m=n}^{d-1} \left( \displaystyle \sum_{k=0}^{m} \left(\frac{d}{d-k} \left( \prod_{j=k+1}^m \frac{j}{d-j} \right) \right) \right)\\\ u_n & = \displaystyle \sum_{m=n}^{d-1} \frac{\displaystyle \sum_{k=0}^{m} \binom{d}{k}}{\binom{d-1}{m}} \end{align} Note that \begin{align} u_n & = \frac{\displaystyle \sum_{k=0}^{n} \binom{d}{k}}{\binom{d-1}{n}} + u_{n+1} & \forall n \in \{0,1,2,\ldots,d-2 \} \end{align} The expected number of steps from one vertex away is when $n = d-1$ and hence $u_{d-1} = 2^d-1$

The expected number of steps from two vertices away is when $n = d-2$ and hence $u_{d-2} = \frac{2d(2^{d-1} - 1)}{d-1}$

The answers for the expected number of steps from a vertex and two vertices away coincide with Douglas Zhare's comment


Initial Solution

Problems such as these fall in the category of Markov chains and one way to solve this is through first step analysis.

We shall denote the vertices of the cube by numbers from $1$ to $8$ with $1$ and $8$ being the opposite ends of the body diagonal.

enter image description here

Let $v_i$ denote the expected number of steps to reach the vertex numbered $8$ starting at vertex numbered $i$.

$v_1 = 1 + \frac{1}{3}(v_2 + v_4 + v_6)$; $v_2 = 1 + \frac{1}{3}(v_1 + v_3 + v_7)$; $v_3 = 1 + \frac{1}{3}(v_2 + v_4 + v_8)$; $v_4 = 1 + \frac{1}{3}(v_1 + v_3 + v_5)$; $v_5 = 1 + \frac{1}{3}(v_4 + v_6 + v_8)$; $v_6 = 1 + \frac{1}{3}(v_1 + v_5 + v_7)$; $v_7 = 1 + \frac{1}{3}(v_6 + v_2 + v_8)$; $v_8 = 0$;

Note that by symmetry you have $v_2 = v_4 = v_6$ and $v_3 = v_5 = v_7$.

Hence, $v_1 = 1 + v_2$ and $v_2 = 1 + \frac{1}{3}(v_1 + 2v_3)$ and $v_3 = 1 + \frac{2}{3} v_2$.

Solving we get $$\begin{align} v_1 & = 10\\ v_2 = v_4 = v_6 & = 9\\ v_3 = v_5 = v_7 & = 7 \end{align}$$

Hence, the expected number of steps to reach the diagonally opposite vertex is $10$.