[Math] Linear Transformations $ \mathbb R^2 \rightarrow \mathbb R^3 $

linear algebramatricesvector-spaces

If $ T : \mathbb R^2 \rightarrow \mathbb R^3 $ is a linear transformation such that $ T \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \\ -2 \end{bmatrix} $ and $ T\begin{bmatrix} 2 \\ -1 \\ \end{bmatrix} = \begin{bmatrix} 10 \\ -1 \\ 1 \end{bmatrix} $ then the standard Matrix $A = ?$

This is where I get stuck with linear transformations and don't know how to do this type of operation. Can anyone help me get started ?

Best Answer

Remember that $T$ is linear. That means that for any vectors $v,w\in\mathbb{R}^2$ and any scalars $a,b\in\mathbb{R}$, $$T(av+bw)=aT(v)+bT(w).$$ So, let's use this information. Since $$T \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \\ -2 \end{bmatrix}, \qquad T\begin{bmatrix} 2 \\ -1 \\ \end{bmatrix} = \begin{bmatrix} 10 \\ -1 \\ 1 \end{bmatrix},$$ you know that $$T\left(\begin{bmatrix} 1 \\ 2 \\ \end{bmatrix}+2\begin{bmatrix} 2 \\ -1 \\ \end{bmatrix}\right)=T\left(\begin{bmatrix} 1 \\ 2 \\ \end{bmatrix}+\begin{bmatrix} 4 \\ -2 \\ \end{bmatrix}\right)=T\begin{bmatrix} 5 \\ 0\\ \end{bmatrix}$$ must equal $$T \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix}+2\cdot T\begin{bmatrix} 2 \\ -1 \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 12 \\ -2 \end{bmatrix}+2\cdot \begin{bmatrix} 10 \\ -1 \\ 1 \end{bmatrix}=\begin{bmatrix} 20 \\ 10 \\ 0 \end{bmatrix}.$$ So, we know $T\begin{bmatrix} 5 \\ 0\\ \end{bmatrix}$. Do you see how to find $T\begin{bmatrix} 1 \\ 0\\ \end{bmatrix}$? Then use the same process to figure out $T\begin{bmatrix} 0 \\ 1\\ \end{bmatrix}$.

After doing that, you should know how to make the (standard basis) matrix for $T$.

Related Question