[Math] Linear regression: degrees of freedom of SST, SSR, and RSS

regressionstatistics

I'm trying to understand the concept of degrees of freedom in the specific case of the three quantities involved in a linear regression solution,

i.e. $SST=SSR+SSE, $

i.e. Total sum of squares = sum of squares due to regression + sum of squared errors,

i.e. $\sum(y_i-\bar y)^2=\sum(\hat y_i-\bar y)^2+\sum(y_i-\hat y_i)^2$.

I tried Wikipedia and thought I had understood why the first (SST) and the third (SSE) have (n-1) and (n-2) degrees of freedom respectively, but I could not make out why (SSR) has 1 degree of freedom. So maybe I did not understand degrees of freedom after all. Can someone explain?

Thank you!

Sources:
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
http://www.cs.rice.edu/~johnmc/comp528/lecture-notes/Lecture9.pdf

Best Answer

There are many different ways to look at degrees of freedom. I wanted to provide a rigorous answer that starts from a concrete definition of degrees of freedom for a statistical estimator as this may be useful/satisfying to some readers:

Definition: Given an observational model of the form $$y_i=r(x_i)+\xi_i,\ \ \ i=1,\dots,n$$ where $\xi_i=\mathcal{N}(0,\sigma^2)$ are i.i.d. noise terms and the $x_i$ are fixed. The degrees of freedom (DOF) of the estimator $\hat{y}$ is defined as $$\text{df}(\hat{y})=\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(\hat{y}_i,y_i)=\frac{1}{\sigma^2}\text{Tr}(\text{Cov}(\hat{y},y)),$$ or equivalently by Stein's lemma $$\text{df}(\hat{y})=\mathbb{E}(\text{div} \hat{y}).$$

Using this definition, let's analyze linear regression.

Linear Regression: Consider the model $$y_i=x_i\beta +\xi_i,$$ with $x_i\in\mathbb{R}^p$ are independent row vectors. In your case, $p=2$, and the $x_i={z_i,1}$ correspond to a point and the constant $1$, and $\beta=\left[\begin{array}{c} m\\ b \end{array}\right]$, that is a slope and constant term so that $x_i \beta=m z_i+b$. Then this can be rewritten as $$y=X\beta+\xi$$ where $X$ is an $n\times p$ matrix whose $i^{th}$ row is $x_i$. The least squares estimator is $\hat{\beta}^{LS}=(X^T X)^{-1}X^Ty$. Let's now based on the above definition calculate the degrees of freedom of $SST$, $SSR$, and $SSE$.

$SST:$ For this, we need to calculate $$\text{df}(y_i-\overline{y})=\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(y_i-\overline{y},y_i)=n-\frac{1}{\sigma^2}\sum_{i=1}^n\text{Cov}(\overline{y},y_i)=n-\frac{1}{\sigma^2}\sum_{i=1}^n \frac{\sigma^2}{n}=n-1.$$

$SSR:$ For this, we need to calculate $$\text{df}(X\hat{\beta}^{LS}-\overline{y})=\frac{1}{\sigma^2}\text{Tr}\left(\text{Cov}(X(X^TX)^{-1}X^y,y\right)-\text{df}(\overline{y})$$ $$=-1+\text{Tr}(X(X^TX)^{-1}X\text{Cov(y,y)})$$ $$=-1+\text{Tr}(X(X^TX)^{-1}X^T)$$ $$=p-1.$$ In your case $p=2$ since you will want $X$ to include the all ones vector so that there is an intercept term, and so the degrees of freedom will be $1$. However note that this will equal the number of parameters when we are doing regression with multiple parameters.

$SSE:$ $(n-1)-(p-1)=n-p$, which follows linearity of $df$.