Real Analysis – $\lim_{x\to0} \frac{x-\sin x}{x-\tan x}$ Without Using L’Hopital

limitslimits-without-lhopitalreal-analysistrigonometry

$$\lim_{x\to0} \frac{x-\sin x}{x-\tan x}=?$$

I tried using $\lim\limits_{x\to0} \frac{\sin x}x=1$.

But it doesn't work :/

Best Answer

In the beginning of this answer, it is shown that $$ \begin{align} \frac{\color{#C00000}{\sin(2x)-2\sin(x)}}{\color{#00A000}{\tan(2x)-2\tan(x)}} &=\underbrace{\color{#C00000}{2\sin(x)(\cos(x)-1)}\vphantom{\frac{\tan^2(x)}{\tan^2(x)}}}\underbrace{\frac{\color{#00A000}{1-\tan^2(x)}}{\color{#00A000}{2\tan^3(x)}}}\\ &=\hphantom{\sin}\frac{-2\sin^3(x)}{\cos(x)+1}\hphantom{\sin}\frac{\cos(x)\cos(2x)}{2\sin^3(x)}\\ &=-\frac{\cos(x)\cos(2x)}{\cos(x)+1}\tag{1} \end{align} $$ Therefore, $$ \lim_{x\to0}\,\frac{\sin(x)-2\sin(x/2)}{\tan(x)-2\tan(x/2)}=-\frac12\tag{2} $$ Thus, given an $\epsilon\gt0$, we can find a $\delta\gt0$ so that if $|x|\le\delta$ $$ \left|\,\frac{\sin(x)-2\sin(x/2)}{\tan(x)-2\tan(x/2)}+\frac12\,\right|\le\epsilon\tag{3} $$ Because $\,\displaystyle\lim_{x\to0}\frac{\sin(x)}{x}=\lim_{x\to0}\frac{\tan(x)}{x}=1$, which are shown geometrically in this answer, we have $$ \sin(x)-x=\sum_{k=0}^\infty2^k\sin(x/2^k)-2^{k+1}\sin(x/2^{k+1})\tag{4} $$ and $$ \tan(x)-x=\sum_{k=0}^\infty2^k\tan(x/2^k)-2^{k+1}\tan(x/2^{k+1})\tag{5} $$ By $(3)$ each term of $(4)$ is between $-\frac12-\epsilon$ and $-\frac12+\epsilon$ of the corresponding term of $(5)$.

Therefore, if $|x|\le\delta$ $$ \left|\,\frac{\sin(x)-x}{\tan(x)-x}+\frac12\,\right|\le\epsilon\tag{6} $$ We can restate $(6)$ as $$ \lim_{x\to0}\frac{x-\sin(x)}{x-\tan(x)}=-\frac12\tag{7} $$