[Math] $\lim_{x \rightarrow 0} \frac{\sin(x)}{x}$ using $\epsilon – \delta$ definition

calculusproof-verificationreal-analysis

So I'm trying to evaluate this limit without using squeeze theorem and doing it by $ \epsilon – \delta$ definition.

Here's my attempt:

$$ \left| \frac{\sin(x)}{x} – 1 \right| \leq \left| \frac{\sin(x)}{x}\right| + |1| \leq \frac{1}{|x|} + 1 $$

Let $\epsilon > 0 $ and $ \delta = \frac{1}{\epsilon}$

$$ |x| < \delta \Rightarrow \frac{1}{|x|} + 1 < \epsilon + 1$$

And I'm stuck here. I also tried $\delta = \frac{1}{\epsilon – 1} $ but that won't work since I'll only proof for $\epsilon > 1$.

Can someone help me? Thanks.

Best Answer

Hint:

Since $\cos\theta<\frac{\sin\theta}{\theta}<1$ $$\bigg|\frac{\sin\theta}{\theta}-1\bigg|<1-\cos\theta$$ and $1-\cos\theta=2\sin^2\frac{\theta}{2}\leqslant\frac{\theta^2}{2}$ hence $$\bigg|\frac{\sin\theta}{\theta}-1\bigg|\leqslant\frac{\theta^2}{2}$$

Related Question