[Math] Levi Civita Symbol: from 4 to 3 indices.

tensors

In Four-dimensional space, the Levi-Civita symbol is defined as:

$$ \varepsilon_{ijkl } =$$
\begin{cases}
+1 & \text{if }(i,j,k,l) \text{ is an even permutation of } (1,2,3,4) \\
-1 & \text{if }(i,j,k,l) \text{ is an odd permutation of } (1,2,3,4) \\
0 & \text{otherwise}
\end{cases}

Let's suppose that I fix the last index ( l=4 for example). I guess that the 4-indices symbol can now be replaced with a 3-indices one:

$$ \varepsilon_{ijk } =$$
\begin{cases}
+1 & \text{if } (i,j,k) \text{ is } (1,2,3), (2,3,1) \text{ or } (3,1,2), \\
-1 & \text{if } (i,j,k) \text{ is } (3,2,1), (1,3,2) \text{ or } (2,1,3), \\
\;\;\,0 & \text{if }i=j \text{ or } j=k \text{ or } k=i
\end{cases}

My doubt is the following: is $$ \varepsilon_{ijk4 }A^{jk} = \varepsilon_{ij4k }A^{jk } $$ true? (In the sense that the 4-indices symbols can both be replaced by the same 3-indices symbols. I'm using the Einstein notation, so multiple indices are summed) or they give two 3-indices symbols with different sign

Best Answer

If you fix one of the indices of $\varepsilon_{ijkl}$ to be $4$ you get $\pm\varepsilon_{ijk}$ depending on wheather you fix an odd or an even positioned index. So $\varepsilon_{ijk4}=\varepsilon_{ijk}$ but $\varepsilon_{ij4k}=-\varepsilon_{ijk}$. To see why the signs come out this way, notice that when you substitute $1,2,3$ for $i,j,k$ you get: $\varepsilon_{1234}=1=\varepsilon_{123}$, but $\varepsilon_{1243}=-1=-\varepsilon_{123}$. So in fact $$\varepsilon_{ijk4}A^{jk}=-\varepsilon_{ij4k}A^{jk}.$$