[Math] Let $x_1 = 2 $, and define $x_{n+1} = \frac{1} {2} (x_n + \frac {2} {x_n})$

convergence-divergencereal-analysissequences-and-series

Show that $x^2_n $ is always greater than or equal to $2$. And then use this to prove that $$x_n – x_{n+1} \geqslant 0 \quad \text{for any } n \in \mathbb{N}$$ Hence conclude that $\lim\limits_{n \to \infty} x_n = \sqrt{2}$.

$\bullet~$ I can show that $x^2_n \geqslant 2$ by induction:

  • Basis step: $x_1=2, x_1^2 = 4 >2$.

  • Inductive step:
    Assume we have some $k$ for which $x^2_K \geqslant 2$, then

\begin{align*}
(x_{k+1})^2 =&~ \bigg(\dfrac{1} {2} \bigg(x_k + \dfrac{2} {x_k}\bigg)\bigg)^2\\
=&~ \dfrac{1} {4} x_k^2 + 1 + \dfrac{1} {x_k^2}\\
\geqslant&~ \dfrac {1} {4} x_k^2 + 1 \geqslant 2\\
&~\dfrac {1} {4} x_k^2 \geqslant 1 \quad \forall~ n \geqslant 2
\end{align*}

How do I use this to show that $$x_n – x_{n+1} \geqslant 0 \quad \text{for any } n \in \mathbb{N}$$
and hence conclude that $\lim\limits_{n \to \infty} x_n = \sqrt{2}$?

Thanks!!

Best Answer

Note the fact that $x_{n+1} =\frac{1}{2}(x_n+\frac{2}{x_{n}}) \le \frac{1}{2}(x_n+x_{n})=x_{n}$ from $x_{n}^2 \ge 2$ (or $x_{n} \ge \frac{2}{x_{n}}$)

Thus, $x_{n}-x_{n+1}\le0$.

This implies that $x_{n}$ is a decreasing sequence that is greater than $\sqrt{2}$, implying that $x_{n}$ is convergent.

Let $\lim{x_n}=a$.

Note the fact that $a=\frac{1}{2}(a+\frac{2}{a})$. This implies that $a=\sqrt{2}$.

Related Question