Geometric Inequalities – Prove Triangle Inequality $\frac{a}{b+c-a}+\frac{b}{c+a-b} + \frac{c}{a+b-c}\geqslant3$

contest-matheuclidean-geometrygeometric-inequalitiesinequalitytriangles

Let $a$, $b$ and $c$ be the three sides of a triangle.
Show that $$\frac{a}{b+c-a}+\frac{b}{c+a-b} + \frac{c}{a+b-c}\geqslant3\,.$$

A full expanding results in:
$$\sum_{cyc}a(a+b-c)(a+c-b)\geq3\prod_{cyc}(a+b-c),$$ or
$$\sum_{cyc}(a^3-ab^2-ac^2+2abc)\geq\sum_{cyc}(-3a^3+3a^2b+3a^2c-2abc),$$ but it becomes very ugly.

Best Answer

$a, b, c$ are sides of a triangle iff there exists positive reals $x, y, z$ s.t. $a=x+y, b=y+z, c = z+x$. In terms of these variables, the inequality is $$\sum_{cyc} \frac{a}{b+c-a} = \sum_{cyc} \frac{x+y}{2z} \ge 3$$

Now the last is easy to show with AM-GM of all $6$ terms. $$\sum_{cyc} \frac{x+y}{2z} = \frac12\left(\frac{x}z+\frac{y}z+\frac{y}x+\frac{z}x+\frac{z}y+\frac{x}y \right) \ge \frac12\left(6\sqrt[6]{\frac{x}z\cdot\frac{y}z\cdot\frac{y}x\cdot\frac{z}x\cdot\frac{z}y\cdot\frac{x}y} \right) = 3$$

Related Question