[Math] Lebesgue measure of numbers whose decimal representation contains at least one digit equal $9$

decimal-expansionlebesgue-measuremeasure-theory

Let $A$ be the set of numbers on $[0, 1]$ whose decimal representation contains at least one digit equal $9$. What is its Lebesgue measure $\lambda(A)$?

Best Answer

Let $0.a_1a_2a_3a_4\ldots$ be a number in $[0,1]$. If the $n^{th}$ digit is the first 9 in the expansion, there are $9^{n-1}$ possible assignments of digits ($0,1,\ldots,8$) to $a_1, a_2, \ldots, a_{n-1}$. For each of these assignments, we have an interval of length $\frac{1}{10^n}$ of numbers having a nine in their expansions.

Summing up over $n$, we get our answer: $$\lambda(A)=\sum_{n=1}^{\infty}\frac{9^{n-1}}{10^n}=\frac{1}{9}\sum_{n=0}^{\infty}\Big(\frac{9}{10}\Big)^n-\frac{1}{9}=\frac{1}{9}\cdot\frac{1}{1-\frac{9}{10}}-\frac{1}{9}=1$$

Related Question