[Math] Laplace Transform of tsin(at) using only the definition

laplace transformordinary differential equations

Hello I' am stuck on how to get the final result of the laplace transform of $f(t)=tsin(at)$using (a is a constant) only the definition of $$\int_0^{\infty}f(t)e^{-st}dt$$,

I know $sin(at)= {1 \over 2i} (e^{iat} – e^{-iat})$

using that I get

$F(s)$=${1 \over 2i}$$[\int_0^{\infty}te^{iat-st}dt-\int_0^{\infty}te^{iat-st}dt]$

using integration by parts for each part I get

Part I

$u_1=t$

$du_1=dt$

$v_1$$=$$e^{iat-st}\over(ia-s)$

$dv_1$$=$$e^{iat-st}$

$te^{iat-st}\over(ia-s)$-$\int$$(e^{iat-st})\over (ja-s)$dt

Part 2

$u_2=t$

$du_2=dt$

$v_2$$=$$e^{-iat-st}\over(-ia-s)$

$dv_2$$=$$e^{-iat-st}$

$te^{-iat-st}\over(-ia-s)$-$\int$$(e^{-iat-st})\over (-ja-s)$dt

It is here where I am stuck at in getting the final result.

Best Answer

You have answered it correctly, all you have to do is just pluging in the limits of integral. The first integral is \begin{align} \left.\frac{te^{-(s-ia)t}}{ia-s}\right|_0^\infty-\frac{1}{ia-s}\int_0^\infty e^{-(s-ia)t}\,dt&=0-\left.\frac{e^{-(s-ia)t}}{(ia-s)^2}\right|_0^\infty\\ &=\frac{1}{(ia-s)^2} \end{align} And the second integral is \begin{align} -\left.\frac{te^{-(s+ia)t}}{ia+s}\right|_0^\infty+\frac{1}{ia+s}\int_0^\infty e^{-(s+ia)t}\,dt&=0-\left.\frac{e^{-(s+ia)t}}{(ia+s)^2}\right|_0^\infty\\ &=\frac{1}{(ia+s)^2} \end{align} Then the answer is \begin{align} F(s)=\frac{1}{2i}\left(\frac{1}{(ia-s)^2}-\frac{1}{(ia+s)^2}\right)=\frac{2as}{\left(a^2+s^2\right)^2} \end{align}