[Math] Laplace Transform of $ te^{2t}$ using unit step function

laplace transformstep function

I was wondering if I could get some help with this question:

Consider the function:
$$f(t) = \begin{cases} te^{2t} \quad \,0 \leq t < 3\\
0 \quad \, 3 \leq t
\end{cases}$$

(a) Find the laplace transform of $f$ by directly using the integral definition of a laplace transform.

(b) Find $f$ in terms of step functions and use the t-shifting theorem to find the laplace transform of $f$
.

For part (a):

By integral definition,

$\mathcal{L}$$f(t)$ = $\int_0^\infty te^{2t} . e^{-st}$ $dt$

= $\int_0^3 te^{(2-s)t} $$dt$

I let $u$=$t$ and $v'$= $e^{(2-s)t}$ and thus $du=dt$ and $v$= $\frac {1}{2-s}$$e^{(2-s)t}$.

Using integration by parts,

F(s)= $\bigg[\frac{t}{(2-s)}e^{(2-s)t}-\frac{1}{2-s}\int e^{(2-s)t} dt\bigg]_{t=0}^{t=3}$

=$\bigg[\frac{t}{(2-s)}e^{(2-s)t}-\frac{1}{(2-s)^2}e^{(2-s)t} \bigg]_{t=0}^{t=3}$

= $\bigg[\frac{3}{(2-s)}e^{(6-3s)}-\frac{1}{(2-s)^2}e^{(6-3s)} -[0-\frac{1}{(2-s)^2}]\bigg]_{t=0}^{t=3}$

I managed to get the answer $\frac {3e^{6-3s}}{2-s}$$\frac {e^{6-3s}}{(2-s)^{2}}$+$\frac {1}{(2-s)^2}$ by using integration by parts.

For part (b):

I manage to write $f$ in terms of the unit step function and got $f(t) = te^{2t} u(t) – te^{2t} u(t-3)$.

I know that

$\mathcal{L}$$f(t)$= $\mathcal{L}$ [$te^{2t} u(t)$] – $\mathcal{L}$
[$te^{2t} u(t-3)$]

and

$\mathcal{L}$[$te^{2t} u(t)$] = $\frac {1}{(s-2)^2}$

I'm having trouble finding the laplace transform of $te^{2t} u(t-3)$ using the unit step function. Here is what I have tried so far:

$\mathcal{L}$[$te^{2t} u(t-3)$]

= $\mathcal{L}$ $[(t-3)e^{2(t-3)} u(t-3)]$

= $\mathcal{L}$ $[(t-3 +3)e^{2t-6+6} u(t-3)]$

Up to this step, I do not know how I should continue from here… Any advice?

Thanks in advance!

Best Answer

We want to find the Laplace Transform of

$$\tag 1 te^{2t} u(t-3)$$

We will make use of two properties from LTs

$$\mathcal{L}(u(t − a)f(t − a)) = e^{−as}F(s)~~ \text{and}~~ \mathcal{L}(t f(t)) = -\dfrac{d}{ds}(F(s))$$

To make use of the properties, we need to get our expression to the same forms , we can write $(1)$ as

$$\mathcal{L}(te^{2t} u(t-3)) = -\dfrac{d}{ds}\mathcal{L}\left(e^{(2(t-3))} e^6 u(t-3)\right) = -e^6\dfrac{d}{ds}\mathcal{L}\left(e^{(2(t-3))} u(t-3)\right)$$

Now we find $$-e^6\dfrac{d}{ds}\left(\dfrac{e^{-3s}}{s-2}\right) = -e^6\left(\frac{e^{-3 s} (5-3 s)}{(s-2)^2}\right) = \frac{e^{6-3 s} (3 s-5)}{(s-2)^2}$$

As an alternate approach, solve it using the definition of the LT

$$\mathcal{L}\left\{ {f\left( t \right)} \right\} = \int_{{\,0}}^{{\,\infty }}{{{{\bf{e}}^{ - s\,t}}f\left( t \right)\,dt}}$$

Related Question