[Math] Laplace transform of $\int_{0}^\infty\frac{e^{-t}\sin^2t}{t}dt$

integrationlaplace transformlaplace-methodlaplaciantrigonometry

Laplace transform of $\int_{0}^\infty\frac{e^{-t}\sin^2t}{t}dt$.

So far I've calculated that $\frac{e^{-t}\sin^2t}{t}$ transformed equals $\frac{1}{8}(\ln((s+1)^2+4)-2\ln(s+1))$.

My question is what should I do with integral $\int_{0}^\infty$ ?

Best Answer

My free interpretation is: how to use the Laplace transform to compute the integral $$ I=\int_{0}^{+\infty}\frac{e^{-t}\sin^2(t)}{t}\,dt $$ ? Well, since: $$\mathcal{L}\left(e^{-t}\sin^2(t)\right)=\frac{2}{(1+s)(5+2s+s^2)}\tag{1}$$ we have: $$ I = 2\int_{0}^{+\infty}\frac{ds}{(1+s)(5+2s+s^2)}=2\int_{0}^{+\infty}\frac{du}{4+e^{2u}}=\int_{0}^{+\infty}\frac{dv}{4+e^v}\tag{2} $$ or: $$ I = \int_{1}^{+\infty}\frac{dw}{w(4+w)}=\color{red}{\frac{\log 5}{4}}.\tag{3}$$