[Math] Lagrange Differential equation

ordinary differential equations

I have problems proceeding in solving the following differential equation $$xy' + y + (y')^2 = 0.$$

After solving for $\frac{dy}{dx}$ in the quadratic and using the substitution $u^2 = x^2 – 4y$ in the discriminant, I obtain $\frac{du}{dx} = 2 \frac{x}{u} -1$. Please how can I proceed?

Best Answer

$$xy+y+y’^2=0$$ Let : $y’=p$ $$y=-xy’-y’^2=-xp-p^2$$ $$ \frac{dy}{dp} =-p\frac{dx}{dp}-x-2p$$ $$p=y’=\frac{dy}{dx}=\frac{dy}{dp} \frac{dp}{dx} =-p-(x+2p) \frac{dp}{dx}$$ $$2p=-(x+2p) \frac{dp}{dx}$$ $$2p\frac{dx}{dp}+x=-2p$$ The solution of this first order linear ODE is : $$x=-\frac{2}{3}p+\frac{C}{2\sqrt{p}}$$ $$y=-xp -p^2= \frac{2}{3}p^2-\frac{C}{2}\sqrt{p} –p^2 =-\frac{1}{3}p^2-\frac{C}{2}\sqrt{p}$$ Finally, the solution of $xy+y+y’^2=0$ expressed on parametric form with parameter $p$ is : $$\begin{cases} x=-\frac{2}{3}p+ \frac{C}{2}\frac{1}{\sqrt{p} } \\ y =-\frac{1}{3}p^2-\frac{C}{2}\sqrt{p} \\ \end{cases}$$ If one want to find the explicit function $y(x)$ the parameter $p$ has to be eliminated from the system $\left(x(p),y(p)\right)$. This is possible, but will lead to complicated equations.

Related Question