Linear Algebra – Jordan Canonical Form and Characteristic Polynomials

linear algebramatrices

Why and how is the Jordan Canonical form of a matrix in $M_3(\mathbb C)$ fully determined by its characteristic and minimal polynomials? And why does it fail for $n >3$? 

Thanks.

Best Answer

If $A\in M_3$ has one eigenvalue $a$, then its characteristic polynomial is $(x-a)^3$, and its minimal polynomial is $x-a$, $(x-a)^2$, or $(x-a)^3$. The only corresponding possibilities for Jordan form are, respectively, 3 blocks of size 1 ($A=aI$), a block of size 2 and hence another of size 1, and one block of size 3. Similarly, the possibilities are determined if there is more than one eigenvalue.

In $M_4$, consider the matrices $\begin{bmatrix}0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\0 & 0 & 0 & 0\end{bmatrix}$ and $\begin{bmatrix}0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{bmatrix}$.

From the characteristic polynomial $(x-a_1)^{n_1}\cdots (x-a_k)^{n_k}$ of a matrix $A\in M_n$ with distinct eigenvalues $a_1,\ldots,a_k$, you can see that the Jordan blocks for the eigenvalue $a_j$ have to have sizes adding to $n_j$. The largest size of one of these blocks is the exponent of $(x-a_j)$ appearing in the minimal polynomial of $A$. In case $n_j=3$, the only sizes possible for the blocks are $1+1+1$, $2+1$, and $3$, so the highest size of a block (the exponent in the minimal polynomial) determines the decomposition for $a_j$. If $n_j=2$ you have $1+1$ and $2$ as possible Jordan structure, so again it is determined by the largest size of a block. But when $n_j>3$, there are always decompositions like $2+2+[n-4\text{ ones}]$ and $2+1+1+[n-4\text{ ones}]$ which have the same largest size block (same exponent in the minimal polynomial), but are different Jordan forms.