[Math] Is this set of matrices closed under matrix multiplication

group-theorymatrices

2×2 matrices of the form:
\begin{bmatrix}\cos x&-\sin x\\\sin x&\cos x\end{bmatrix}
x is a real number

multiplying the matrix by itself produces
\begin{bmatrix}\cos^2x-\sin^2x&-2\cos x\sin x\\2\sin x\cos x&\cos^2x-\sin^2x\end{bmatrix}

Is this product matrix still in the set? It seems not to be in my mind, but I'm not sure.

Best Answer

To check if $S:=\left\{\begin{bmatrix}\cos(x)&-\sin(x)\\\sin(x)&\cos(x)\end{bmatrix}:x\in\Bbb R\right\}$ is closed under multiplication you would need to multiply $$\begin{bmatrix}\cos(x)&-\sin(x)\\\sin(x)&\cos(x)\end{bmatrix}\begin{bmatrix}\cos(y)&-\sin(y)\\\sin(y)&\cos(y)\end{bmatrix}$$ not $$\begin{bmatrix}\cos(x)&-\sin(x)\\\sin(x)&\cos(x)\end{bmatrix}\begin{bmatrix}\cos(x)&-\sin(x)\\\sin(x)&\cos(x)\end{bmatrix}$$ because the two matrices need not be the same. So we need to show $$\begin{bmatrix}\cos(x)&-\sin(x)\\\sin(x)&\cos(x)\end{bmatrix}\begin{bmatrix}\cos(y)&-\sin(y)\\\sin(y)&\cos(y)\end{bmatrix}=\begin{bmatrix}\cos(x)\cos(y)-\sin(x)\sin(y)&-\cos(x)\sin(y)-\sin(x)\cos(y)\\\sin(x)\cos(y)+\cos(x)\sin(y)&-\sin(x)\sin(y)+\cos(x)\cos(y)\end{bmatrix}$$ is in $S$. Recall the identities: $$(1)\qquad\sin(x\pm y)=\sin(x)\cos(y)\pm\sin(y)\cos(x)\\(2)\qquad \cos(x\pm y)=\cos(x)\cos(y)\mp \sin(x)\sin(y)$$