[Math] Is this a linear estimator

parameter estimationregression

I would like to prove if

$$\hat{\beta_1} = \frac{1}{n}\sum_{i=0}^n \frac{y_i-\bar{y}}{x_i-\bar{x}}$$

where $y = {\beta_0} + {\beta_1}x+ u$ and $\Bbb E(u\mid x) = 0$, is a linear estimator or not. But I was stuck at not knowing how to deal away $\bar y$.

According to definition from wikipedia

A linear estimator of $\beta_j$ is a linear combination $\widehat{\beta_j} = c_{1j}y_1+\cdots+c_{nj}y_n$ in which the coefficients $c_{ij}$ are not allowed to depend on the underlying coefficients $\beta{j}$.

Could anyone help? Thanks in advance.

Best Answer

If $z=y'+y''$,

$$\frac{1}{n}\sum_{i=0}^n \frac{z_i-\bar{z}}{x_i-\bar{x}}= \frac{1}{n}\sum_{i=0}^n \frac{(y'_i+y''_i)-\overline{y'+y''}}{x_i-\bar{x}}= \hat\beta'_1+\hat\beta''_1 $$

If $z=\lambda y$,

$$\frac{1}{n}\sum_{i=0}^n \frac{z_i-\bar{z}}{x_i-\bar{x}}= \frac{1}{n}\sum_{i=0}^n \frac{\lambda y_i-\lambda \bar{y}}{x_i-\bar{x}}= \lambda\hat{\beta_1} $$

hence $\hat\beta_1$ is clearly linear in $y$.

Related Question