Calculus – Methods to Evaluate $\int_1^{\infty}\frac{\{x\}-\frac{1}{2}}{x}\ \mathrm dx$

calculusdefinite integralsimproper-integralsintegration

$$\displaystyle\int_1^{\infty}\frac{\{x\}-\frac{1}{2}}{x}\ \mathrm dx$$

where $\{x\}$ denotes the fractional part of x (for example- $\{3.141\}=0.141)$

I'm looking for alternative methods (maybe also ones which are shorter) to what I already know (method I have used below), to Evaluate this.


The only method I know:

$$\ln(n!)=\sum_{k=2}^{n} \ln k$$

$$\ln(n!)=\sum_{k=2}^{n} \color{brown}{\int_1^k \frac{dx}{x}}$$

Since: $$\color{brown}{\int_1^k \frac{dx}{x}}=\sum_{j=1}^{k-1} \int_j^{j+1} \frac{dx}{x}$$

$$\ln(n!)=\sum_{k=2}^{n} {\Bigg\{\sum_{j=1}^{k-1} \int_j^{j+1} \frac{dx}{x}}\Bigg\}$$

$$\ln(n!)=(n-1)\int_1^2 \frac{dx}{x}+(n-2)\int_2^3 \frac{dx}{x}+\cdots+\int_{n-1}^n \frac{dx}{x}$$

$$ln(n!)=\int_1^2 \frac{(n-1) dx}{x}+\int_2^3 \frac{(n-2)dx}{x}+\cdots+\int_{n-1}^n \frac{dx}{x}$$

The general form of the terms in the last summation is, with $1\leq j\leq n-1$

$$\int_j^{j+1} \frac{(n-j)}{x}dx=\int_j^{j+1} \frac{(n-[x])}{x} dx$$

where the notation $[x]$ means the integer part of $x$

because, for the integration interval $j\leq x <j+1$

$$\ln(n!)=\int_1^n \frac{n-[x]}{x} dx$$


Now :

$$x=[x]+\{x\}\implies[x]=x-\{x\}$$

$$\Large{\color{orange}{\ln(n!)}} = \int_1^n \frac{n-x+\{x\}}{x}dx=n\ln(n)-n+1+\int_1^n \frac{\{x\}}{x}dx$$

$$=n\ln(n)-n+1+\frac{1}{2}\ln(n)+\int_1^n \frac{\{x\}-\frac{1}{2}}{x}dx$$
$$\left(n+\frac{1}{2}\right)\ln(n)-n+1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x} dx$$

$$=\ln\left(n^{n+\frac{1}{2}}\right)+\ln(e^{-n})+1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x} dx$$

$$=\ln\left(e^{-n}n^{n+\frac{1}{2}}\right)+\ln\left(e^{1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x}dx}\right)$$

$$=\color{crimson}{\Large{\ln\left(e^{-n}n^{n+\frac{1}{2}}e^{1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x}dx}\right)}}$$


$$\Large{\color{orange}{n!}=\color{Crimson}{e^{-n}n^{n+\frac{1}{2}}e^{1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x}dx}}}$$

$$\Large{e^{1+\int_1^n \frac{\{x\}-\frac{1}{2}}{x}dx}=\frac{n!}{e^{-n}n^{n+\frac{1}{2}}}}$$

If we let $n\to \infty$ And using Stirling's formula, we have:

$$\Large{e^{1+\int_1^{\infty} \frac{\{x\}-\frac{1}{2}}{x}dx}}=\sqrt{2\pi}$$

Thus,
$$1+\int_1^{\infty} \frac{\{x\}-\frac{1}{2}}{x}dx=\ln(\sqrt{2\pi})$$

$$\bbox[8pt,border:2px #0099FF solid]{\int_1^{\infty}\frac{\{x\}-\frac{1}{2}}{x} dx=-1+\ln(\sqrt{2\pi})}$$

Best Answer

\begin{align} \int_1^{\infty}\frac{\{x\}-\frac{1}{2}}{x}\ \mathrm dx &=\sum_{n=1}^\infty\int_n^{n+1}\frac{x-n-\frac{1}{2}}{x}\ \mathrm dx\\[9pt] &=\sum_{n=1}^\infty\left[1-\left(n+\frac{1}{2}\right)\ln\left(\frac{n+1}{n}\right)\right]\\[9pt] &=\sum_{n=1}^\infty\left[\ln e+\left(n+\frac{1}{2}\right)\ln\left(\frac{n}{n+1}\right)\right]\\[9pt] &=\sum_{n=1}^\infty \ln\left(e\left(\frac{n}{n+1}\right)^{n}\sqrt{\frac{n}{n+1}}\right)\\ &= \ln\left(\prod_{n=1}^\infty e\left(\frac{n}{n+1}\right)^{n}\sqrt{\frac{n}{n+1}}\right)\\[9pt] &= \ln\left(\frac{\sqrt{2\pi}}{e}\right)\tag{$\spadesuit$}\\[9pt] &=\bbox[8pt,border:3px #FF69B4 solid]{\color{red}{\large\ln\left(\,\sqrt{2\pi}\,\right)-1}} \end{align}


$$(\spadesuit)$$

Related Question