[Math] Is the function $f(x,y)=\frac{\sin(x^2+y^2)}{x^2 + y^2}$ continuous

analysiscontinuitylimitsmultivariable-calculus

choose the correct answer:

i) Let
$f: \mathbb{R}^2 \to \mathbb{R}$

$
f( \, (x,y) \, ) =
\begin{cases}
\frac{\sin(x^2+y^2)}{x^2 + y^2}, & \text{if $(x,y) \neq (0,0)$,} \\[6pt]
1, & \text{if $(x,y) = (0,0)$.}
\end{cases}
$

The function $f$ is continuous on:

(a) $\mathbb{R}^2$

(b)$\mathbb{R}^2 – \{(0,0)\}$

(c) $\{(0,0)\}$

(d) $ \phi$

My answer is:

(a) $\mathbb{R}^2$, because

$f^{-1} (\{1\})=\{(x,y) \in \mathbb {R}^2 : (x,y)=(0,0) \}$

$\{1\}$ is closed in $\mathbb {R}$ and $f^{-1} (\{1\})$ is closed in $\mathbb {R}^2$

ii) Let
$f: \mathbb{R}^2 \to \mathbb{R}$

$
f( \, (x,y) \, ) =
\begin{cases}
\frac{\sin(x^2+y^2)}{x^2 + y^2}, & \text{if $(x,y) \neq (0,0)$,} \\[6pt]
0, & \text{if $(x,y) = (0,0)$.}
\end{cases}
$

The function $f$ is continuous on:

(a) $\mathbb{R}^2$

(b)$\mathbb{R}^2 – \{(0,0)\}$

(c) $\{(0,0)\}$

(d) $ \phi$

My answer is:

(b)$\mathbb{R}^2 – {(0,0)}$, because the function $f$ is not continuous at $(0,0)$

$ $$
\lim_{(x,y)\to (0,0)} \frac{\sin(x^2+y^2)}{x^2 + y^2}= \lim_{t \to 0} \frac{\sin t}{t}= 1 \neq f(0,0)=0
$

true ?

Best Answer

i) Since the functions $f_1(x,y)=\sin(x^2+y^2)$ and $f_2(x,y)=x^2+y^2$ are continuous on $\mathbb{R}^2\setminus\{(0,0)\}$ with $f_2(x,y)\neq 0$ on $\mathbb{R}^2\setminus\{(0,0)\}$, then $f|_{\mathbb{R}^2\setminus\{(0,0)\}} = f_1/f_2$ is continuous on $\mathbb{R}^2\setminus\{(0,0)\}$. Thus, for $f(x,y)$ to be continuous, it suffices to verify that $f(x,y)$ is continuous in $(0,0)$. Note that $(0,0)$ is an accumulation point of $\mathbb{R}^2$ and $(x,y)\to(0,0) \Leftrightarrow r=x^2+y^2\to 0$, and then follows $$ \displaystyle \lim_{(x,y)\to (0,0)} f(x,y) = \lim_{(x,y)\to (0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{r\to 0} \frac{\sin(r)}{r}= 1 = f(0,0), $$ therefore $f$ is continuous in $(0,0)$. ii) Similarly to the previous question, $f$ can only be continuous in $\mathbb{R}^2\setminus\{(0,0)\}$.

Related Question