[Math] Is $\sum \sin{\frac{\pi}{n}}$ convergent

analysisreal-analysissequences-and-series

I have to test for convergence of the series:

  • $\displaystyle \sum\limits_{n=1}^{\infty} \sin\Bigl(\frac{\pi}{n}\Bigr)$

What i did was

\begin{align*}
\sin\Bigl(\frac{\pi}{n}\Bigr)+ \sin\Bigl(\frac{\pi}{n+1}\Bigr) + \cdots & < \pi \biggl( \frac{1}{n+1} + \frac{1}{n+2} + \cdots \biggr) \\ &= \pi \biggl( \sum\limits_{r=1}^{\infty} \frac{1}{n+r}\biggr) =\int\limits_{0}^{1} \frac{1}{1+x} \ dx \\ &= \pi\log{2}
\end{align*}

I think this proves the convergence of the series.

  • I am interesting in knowing some more methods which can be used to prove the convergence so that i can apply them.

ADDED: Note that $$\lim_{n \to \infty} \sum\limits_{r=1}^{n} \frac{1}{n} \cdot f\Bigl(\frac{r}{n}\Bigr) = \int\limits_{0}^{1} f(x) \ \textrm{dx}$$

Best Answer

You observed correctly that for small angles $\frac{\pi}{n}$, sin$\left(\frac{\pi}{n}\right)$ is very close to $\frac{\pi}{n}$. As for convergence of $\pi\sum_{n=1}^\infty\frac{1}{n}$...