Calculus and Real Analysis – Convergence of Series $\sum_{n=1}^{\infty}\frac{\cos(nx)}{n^\alpha}$ for $\alpha>0$

calculusconvergence-divergencedirichlet-seriesreal-analysissequences-and-series

I've done the following exercise:

Is series $\displaystyle\sum^{\infty}_{n=1}\frac{\cos(nx)}{n^\alpha}$, for $\alpha>0$, convergent?

My approach:

We're going to use the Dirichlet's criterion for convergence of series. Let $\displaystyle\ \{a_n\}=\frac{1}{n^{\alpha}}$ and $\{b_n\}=\cos(nx)$.

We see that $\{a_n\}$ is decreasing and has limit $0$. We have to see now that $$\sup_{N}{\left| \sum_{n=1}^{N}{\cos(nx)} \right|}<\infty.$$

$$\displaystyle \sum_{n=0}^{N}e^{inx}=\sum_{n=0}^{N}(e^{ix})^{n}= \frac{1-e^{ix(n+1)}}{1-e^{ix}}, \text{if x} \neq 2k\pi. $$

So $${\left| \sum_{n=0}^{N}{\cos(nx)} \right|}={\left| \Re\left(\sum_{n=0}^{N}{e^{inx}}\right) \right|}={\left| \Re\left(\frac{1-e^{ix(N+1)}}{1-e^{ix}}\right) \right|} \leq {\left| \frac{1-e^{ix(N+1)}}{1-e^{ix}} \right|}\leq {\frac{\left|1\right|+\left| e^{i(N+1)x} \right|}{\left|1-e^{{ix}} \right|}}=\frac{2}{\left|1-e^{{ix}} \right|}.$$

So, by Dirichlet, if $x\neq 2k\pi$, the series is convergent.

What happens if $x= 2k\pi$?

$$\displaystyle\sum^{\infty}_{n=1}\frac{\cos(n(2k\pi))}{n^\alpha}=\displaystyle\sum^{\infty}_{n=1}\frac{1}{n^\alpha}$$

and we know that this series converges when $\alpha>1$ and diverges if $\alpha\leq 1$.

Have I done any mistake/s? Is my approach correct? Thank you.

Best Answer

Your approach is correct, and you didn't do any mistakes. Please accept this (or another) answer, so that this question will be complete.

Related Question