Linear Algebra – Is It Misleading to Think of Rank-2 Tensors as Matrices?

intuitionlinear algebratensors

Having picked up a rudimentary understanding of tensors from reading mechanics papers and Wikipedia, I tend to think of rank-2 tensors simply as square matrices (along with appropriate transformation rules). Certainly, if the distinction between vectors and dual vectors is ignored, a rank 2 tensor $T$ seems to be simply a multilinear map $V \times V \rightarrow \mathbb{R}$, and (I think) any such map can be represented by a matrix $\mathbf{A}$ using the mapping $(\mathbf{v},\mathbf{w}) \mapsto \mathbf{v}^T\mathbf{Aw}$.

My question is this: Is this a reasonable way of thinking about things, at least as long as you're working in $\mathbb{R}^n$? Are there any obvious problems or subtle misunderstandings that this naive approach can cause? Does it break down when you deal with something other than $\mathbb{R}^n$? In short, is it "morally wrong"?

Best Answer

It's not misleading as long as you change your notion of equivalence. When a matrix represents a linear transformation $V \to V$, the correct notion of equivalence is similarity: $M \simeq B^{-1} MB$ where $B$ is invertible. When a matrix represents a bilinear form $V \times V \to \mathbb{R}$, the correct notion of equivalence is congruence: $M \simeq B^TMB$ where $B$ is invertible. As long as you keep this distinction in mind, you're fine.